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Résumé

La théorie des systèmes dynamiques étudie les phénomènes qui évoluent au cours du temps.
Plus précisément, un système dynamique est donné par : un espace de phase dont les points cor-
respondent à des états possibles du système étudié et une loi d’évolution décrivant l’infinitésimal
(pour le cas continu) pas à pas (pour le cas discret) les changements des états du système. Le
but de la théorie est de comprendre l’évolution dans le long terme. Dans ce travail, nous pré-
sentons une nouvelle méthode pour la résolution des systèmes linéaires avec preuve assistée par
ordinateur dans le cadre de modèles linéaires réalistes. Après une introduction de quelques pro-
priétés de la théorie des équations différentielles ordinaires, on introduit une méthode de calcul
rigoureux pour trouver la solution périodique de la conjecture de Galaktionov-Svirshchevskii.
On reformule le problème comme un problème à valeur initiale, puis on calcule la solution
périodique dans le domaine positif et on déduit l’autre solution par symétrie. Notre résul-
tat énonce une partie de la conjecture 3.2 dans le livre de Victor A. Galaktionov & Sergey
R. Svirshchevskii : Exact Solutions and Invariant Subspaces of Nonlinear Partial Differen-
tial Equations in Mechanics and Physics, [Chapman & Hall/CRC, applied mathematics and
nonlinear science series, (2007)].

Mots clés. Conjecture de Galaktionov-Svirshchevskii, Analyse d’intervalle, Théorème de
contraction de Banach, Polynômes de rayons.
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Abstract

The theory of dynamical systems studies phenomena which are evolving in time. More pre-
cisely, a dynamical system is given by the following data: a phase space whose points corre-
spond to the possible states of the system under consideration and an evolution law describing
the infinitesimal (for continuous time) or one-step (for discrete time) change in the state of
the system. The goal of the theory is to understand the long term evolution of the system.
In this work, we introduce a new method for solving piecewise linear systems with computer
assisted proofs in the context of realistic linear models. After introducing some properties of
the theory of ordinary differential equations, we provide a rigorous computational method for
finding the periodic solution of Galaktionov-Svirshchevskii’s conjecture. We reformulate the
problem as an initial value problem, compute periodic solution in the positive domain and
deduce the other solution by symmetry. Our result settles one part of the Conjecture 3.2 by
Victor A. Galaktionov & Sergey R. Svirshchevskii: Exact Solutions and Invariant Subspaces of
Nonlinear Partial Differential Equations in Mechanics and Physics, [Chapman & Hall/CRC,
applied mathematics and nonlinear science series, (2007)].

Key words. Galaktionov-Svirshchevskii’s conjecture, Interval analysis, Contraction mapping
theorem, Radii polynomials.
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Introduction

In general, the applied mathematician faces a highly nontrivial, perhaps impossible, task when
trying to rigorously verify the hypotheses of general theorems for realistic models of physical
systems. In fact, doing so might require the development of a new area of mathematics. Most
often, we are left to face the realization that rigorous results can only be obtained for simplified
models. [5, page 375]

We consider the autonomous fourth-order ODE

φ(4) + 10φ(3) + 35φ(2) + 50φ′ + 24φ+ sign(φ) = 0, (0.1)

where φ is the oscillatory component of the function h(w) = w4φ(s), s = ln(w) and h(4) +

sign(h) = 0. Existence and uniqueness of periodic solutions are open questions. The
Galaktionov-Svirshchevskii’s conjecture states that (0.1) has a unique nontrivial periodic so-
lution φ(s) which is asymptotically stable as s −→ +∞. The Figure (0.1)1 shows the stable
periodic motion obtained for different initial data.

Figure 0.1: The stable periodic behavior in (1).

1Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics,
Chapman & Hall/CRC, applied mathematics and nonlinear science series, (2007), page 150.
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In this project, a rigorous computational method to compute solutions of piecewise smooth
systems is introduced. A general theory based on the radii polynomial approach is proposed
to compute the periodic solution of Galaktionov-Svirshchevskii’s conjecture. We present a
form of the above mentioned ”new area of mathematics”. We introduce the theory of ordinary
differential equation with computer assisted proofs in the context of realistic linear models. In
the opening chapter, we introduce a method to compute with intervals of real numbers instead
of real numbers. This is called interval analysis and we will use interval arithmetic and Intlab
to obtain rigorous bounds for the exact solution. In chapter two, we introduce some classical
results of ordinary differential equations and nonhomogeneous linear systems. The goal of
chapter three is to develop a constructive method to prove the existence of zeros of finite di-
mensional maps and provide bounds on their location. This is done using the radii polynomial
approach which is a variant of Newton’s method. In chapter four, we introduce a rigorous
computational method for finding the periodic solution of Galaktionov-Svirshchevskii’s conjec-
ture and validated numerics of this conjecture. We finish this work by giving some numerical
codes in Matlab for our conjecture.
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Chapter 1

Interval Analysis in Matlab

The concept of interval analysis is to compute with intervals of real numbers instead of real
numbers. Sometimes floating point arithmetic has rounding errors and can produce inaccurate
results. We use interval arithmetic to obtain rigorous bounds for the location of numerically
computational solution. To do computations with some unknown parameters within a certain
interval, it is recommended to use interval analysis. Algorithms may be implemented using
interval arithmetic with uncertain parameters as intervals to produce an interval that bounds
all possible results. If the lower and upper bounds of the interval can be rounded down and
rounded up respectively then finite precision calculations can be performed using intervals, to
give an enclosure of the exact solution. As it is not difficult to implement existing algorithms
using intervals in place of real numbers, the result may be of no use if the interval obtained is
too large. In this case, other computational methods must be considered or new ones developed
in order to make the interval result as narrow as possible. In the 1950’s, several people
worked in this area but interval analysis began with a book Interval Arithmetic. Prentice-
Hall, Englewood Cliffs, NJ, USA, by Ramon Edgar Moore1 in 1966. It is an approach to
bound rounding errors in a mathematical computation. This theory emerged considering the
computation of the exact solution and the error as the single entity, i.e the interval. It is
a powerful technique with many applications in mathematics, engineering, computer science,
etc...

The goal of this chapter is to give some basic concepts of interval arithmetic using Intlab2,
which is a toolbox in Matlab for self-validating algorithms. Intlab supports real and complex
intervals, vectors, full and sparse matrices, rigorous standard functions, multiple precision
interval arithmetic and automatic differentiation. It can be implemented to all algorithms in
Matlab and it is designed to be very fast.

1Ramon Edgar Moore, born in 1929 in California, is an American mathematician.
2source: http://www.ti3.tu-harburg.de/v rump/intlab/index.html

3



1.1 Interval Arithmetic

As we are computing intervals instead of real numbers, they will be represented by brackets
[.], used for intervals defined by an upper bound and a lower bound. With intervals defined
by a radius and a midpoint, the brackets < . > will be used.

1.1.1 Real Interval Arithmetic

We define a real interval x as a nonempty set of reals numbers

x = [x, x] = {x ∈ R : x ≤ x ≤ x}.

x is the infimum, x the supremum and the set of all intervals over R is denoted by R where

R = {[x, x] : x, x ∈ R, x ≤ x}.

The midpoint and the radius of x are denoted by

mid(x) = x̃ =
1

2
(x+ x), rad(x) =

1

2
(x− x).

They can be used to define an interval x ∈ R. In this case, if m is the midpoint and r the
radius, this interval is represented by < m,r > . A point interval is an interval with zero
radius, it contains a single point represented by

[x,x] ≡ x.

If the radius is greater than zero, then x is a thick interval. The magnitude or absolute value
and the mignitude of x are defined as follows

|x| = mag(x) = max{|x̃|, x̃ ∈ x}, mig(x) = min{|x̃|, x̃ ∈ x}.

We say that x ⊆ y if, and only if y ≤ x and y ≥ x. This inclusion is not an equivalence
relation as it is not symmetric. The relation x < y implies x < y.

Let x = [x, x], y = [y, y] ∈ R, the four elementary operations are defined by

x op y = {x op y, x ∈ x, y ∈ y} for op ∈ {+,− ,× ,÷}.

As the classical arithmetic operates on real numbers, interval arithmetic defines a set of oper-
ations on intervals. The base arithmetic operations are as follows.

4



Definition 1.

x+ y = [x+ y, x+ y], (1.1)

x− y = [x− y, x− y], (1.2)

x× y = [min(xy, xy,xy, xy),max(xy, xy, xy,xy)], (1.3)

1/x = [1/x, 1/x], x > 0 or x < 0, (1.4)

x÷ y = x× 1/y. (1.5)

1.1.2 Why interval arithmetic ?

There are many sources of errors by using numerical computations. Rounding, truncation and
input errors are usually frequent. Let us give some examples to show how interval arithmetic
is meant to keep track of them.

Example 1. (Rounding errors)
Let us consider the function g(x) = 1− x+ x2

2 , with x = 0.531 i.e with 10−3 precision. If we
evaluate this expression with classical arithmetic, we obtain the result g(x) = 0.610. And by
computing this expression using interval arithmetic, we obtain

g(x) = 0.469 +
0.5312

2
∈ 0.469 + [0.281,0.282]2

2 .

Thus g(x) ∈ 0.469 + [0.140, 0.141] = [0.609, 0.610]. This shows that the exact result is within
the interval [0.609, 0.610].

Example 2. (Truncation errors)
We are interested in the Taylor series of the exponential function ex = 1 + x + x2

2! e
ψ, with

ψ ∈ [0,x]. If x < 0, ex ∈ 1 + x+ x2

2! [0,1]. For x = −0.531, we obtain

e−0.531 ∈ 1− 0.531 + (−0.531)2

2! [0,1] = 0.469 + [0.140, 0.141][0, 1] = [0.469, 0.610].

This shows how interval arithmetic keeps track of both, the truncation and the rounding
errors.

Example 3. (Input errors)
Due to data uncertainly, suppose that x ∈ [−0.532,−0.531]. By using the previous expression,
we obtain

ex ∈ 1 + [−0.532,−0.531] +
[−0.532,−0.531]2

2!
[0,1] = [0.468, 0.470] +

[0.280,0.284]2

2
[0,1],

= [0.468, 0.470] + [0, 0.142],

= [0.468, 0.612].

This example shows how interval arithmetic can keep track of all error types simultaneously.
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Remark 1. Note that division by zero is not defined for the elementary interval operations.
We have to remove this restriction and apply what is called extended interval arithmetic. Let
us finish this section by some important properties of inclusions, this theorem is labelled as
the fundamental theorem of interval analysis.

Theorem 1.1. Moore’s fundamental theorem
Suppose that the function f(y

1
, ...,y

n
) defined an arithmetical expression (expression that

results in a numeric value) with a finite number of intervals, y
1
,....y

n
∈ R. Consider the four

interval operations (+,−,×,÷). If

x1 ⊆ y1
,....,xn ⊆ yn

then

f(x1,x2,....,xn) ⊆ f(y
1
,y

2
,.....,y

n
).

Proof 1.2. Suppose that x ⊆ y and u ⊆ v. By the previous interval arithmetic operations,
we have

x+ u ⊆ y + v,

x− u ⊆ y − v,

x× u ⊆ y × v,

x/u ⊆ y/v.

By the inclusion relation, we have

y ⊆ u and u ⊆ v =⇒ y ⊆ v,

and by induction argument, the result follows.

Remark 2. By Moore’s fundamental theorem of interval arithmetic, any function f defined
by an arithmetical expression has a corresponding interval evaluation function F which is an
inclusion function of f :

F (x) ⊇ f(x) = {f(x) : x ∈ x}.

It is an advantage in the sense that there is no restrictions to a particular class of functions
that it can be applied to.
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Figure 1.1: Inclusion property of interval arithmetic.

3

1.1.3 Interval Vectors and Matrices

Definition 2. Let n ∈ N, an interval vector X = {x1, x2, ...., xn} ∈ Rn is defined to be a
vector with interval components, x1, x2, .....,xn ∈ R.

Definition 3. Let m,n ∈ N, an m × n interval matrixM ∈ Rm×n is defined to be a matrix
with interval components.

Remark 3. A point matrix or point vector has components all with zero radius, otherwise it
is said to be a thick matrix or a thick vector.

The operations with interval vectors and interval matrices are carried out according to the
operations on R.

Definition 4. Let X = {x1, x2, ...., xn}, Y = {y
1
, y

2
, ...., y

n
} ∈ Rn. We say that

X > Y , if xi > y
i
for all i.

As for vectors in Rn, the infinity norm of an interval vector X ∈ Rn is given by

‖X‖∞ = max{ |xi|, i = 1, 2,...,n}.

3Figure 1.1, Y. Hijazi, H. Hagen, C. Hansen, and Kenneth I. Joy, Why interval arithmetic is so useful
subs.emis.de/LNI/Seminar/Seminar07/148.pdf, page 151.
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1.1.4 Complex Interval Arithmetic

Definition 5. Let x, y ∈ R be real intervals. A rectangular complex interval is defined as

x + iy = {x+ iy, x ∈ x, y ∈ y}.

It produces a rectangle of complex numbers in the complex plane with sides parallel to the
coordinates axis. As for complex numbers in C, complex interval operations are defined in the
same way.

Example 4. Let x = [1, 2] + i[1, 2] and y = [3, 4] + i[3, 4], then

x× y = [−5, 5] + i[6, 16].

Remark 4. The multiplication of rectangular complex intervals produces a rectangle in the
complex plane. However if x = x1 + ix2 and y = y

1
+ iy

2
, the result

x× y = x1x2 − y1
y

2
+ i(x1y2

+ x2y1
)

produces a rectangle with actual range not in this shape. This implies that an overestimation
of x× y is calculated. In the previous example, the product x× y is not rectangular but lies
in the dashed lines for Figure 1.24.

Remark 5. (Outward Rounding) Note that if x and x are not machine numbers, the result
x = [x,x] may not be representable on a machine. If x and x are not rounded, the rounded
interval may not bound the original interval. We have to apply the Outward Rounding,

i.e. x must be rounded downward and x rounded upward, to obtain x ∈ x. For floating point
arithmetic, the standard ubiquitus IEEE has four rounding modes, nearest, round down, round
up and round towards zero. Intlab uses the routine setround to change the rouding mode of the
processor between nearest, round up and round down. This choice is used to create functions
for input, output and arithmetic intervals.

Let us introduce some basic functions of Intlab in the next section.

1.2 Introduction to INTLAB

To initialize global variables and add the Intlab directories to the MATLAB seach path, type
the command � startintlab.

4source: Interval Analysis in MATLAB, G. I. Hargreaves, Numerical Analysis Report No. 416, Dec 2002.
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Figure 1.2: Example of complex interval multiplication.

Example 5. We can represent the interval x = [1,1], using infimum and supremum as
� x = infsup(−1,1).

We can also use the midpoint and the radius to represent the same interval as
� x = midrad(0,1).

A circular region with midpoint 2 + i and radius 3 is represented by
� x = midrad(2 + i,3).

Note that if we use the infimum and supremum to represent a rectangular region then it is
stored with an overestimation as the smallest circular region enclosing it. The region with a
infimum of 1 + i and a supremum of 2 + 2i is represented by
� z = infsup(1 + i,2 + 2i).
The command
� midrad(z) =< 1.50000000000000 + 1.50000000000000i, 0.70710678118655 >

gives us the midpoint and the radius.

The function intval provides directly an interval variable. It can also be used to change
variable to interval type. It gives us an interval and verified bound. We know that the value
0.1 cannot be expressed in binary floating point arithmetic, but we can use intval to provide a
rigorous bound. In this case, this variable will not contains an interval including x = 0.1, since
it is converted to binary format before being passed to Intval. So a thin interval is obtained,
with radius rad(x) = 0.
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We can use intval with a string argument to obtain rigorous bounds. For example, let

� x = intval(′0.1′),

then we get
� intval(x) = [0.09999999999999, 0.10000000000001].
This command use an INTLAB verified conversion to binary. Finally, x contains 0.1 since the
radius is
� rad(x) = 1.387778780781446e−017.

The commands inf(x), sup(x), mid(x) and rad(x) give us the infimum, supremum, midpoint
and radius of a interval x.Interval matrices and vectors are entered in a similar way by using
the arguments being matrices or vectors with required size. In this example, we are going to
show that the interval arithmetic operations are not distributive.

Example 6. Let us compute I2
1I

3
2/I

4
3 and eI1 sin(I2I3), with

I1 = [−1, 2], I2 = [−10.987654321, 1.23456789] and I3 = [π, π + 0.1].

We have eI1 = [0.3678,7.3890] and by the definition 1 we get

sin(I2I3) = [min(sin(I2(1).I3(1)),sin(I2(1).I3(2)),sin(I2(2).I3(1)),sin(I2(2).I3(2))),

max(sin(I2(1).I3(1)),sin(I2(1).I3(2)),sin(I2(2).I3(1)),sin(I2(2).I3(2)))],

= [min(sin(−34.5187), sin(−35.6175),sin(3.8785),sin(4.0019),

max(sin(−34.5187),sin(−35.6175),sin(3.8785),sin(4.0019)],

= [min(−0.5666,−0.5823,0.067,0.069),min(−0.5666,−0.5823,0.067,0.069)],

= [−0.5823,0.069].

then

eI1sin(I2I3) = [0.3678,7.3890].[−0.5823,0.069] = [−0.2141, 0.5098].

On the other hand,

I2
1 = [−1.000, 2.000].[−1.000,2.000] = [1.000,4.000],

I3
2 = ([−10.9876, 1.2345])3 = [−10.9876, 1.2345].[−10.9876, 1.2345].[−10.9876, 1.2345],

= [−1326.5038,1.8],

I4
3 = [π4, (π + .1)4] = [97.4091, 110.4164]⇒ 1/I4

3 = [0.0090,0.0102].
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So we get,

I2
1I

3
2/I

4
3 = [1.000,4.000].[−1326.5038,1.8].[0.0090,0.0102],

= [−11.9385,0.0734].

We have also,

I1(I2 + I3) = [−1.000,2.000].[−7.8460, 4.4761] = [−15.6922,8.9524],

I1I2 = [−21.9753,10.9876] and I1I3 = [−3.2416,6.4832]. This implies that

I1I2 + I1I3 = [−25.2169,17.4708].

We conclude that the interval arithmetic operations are not distributive.

Remark 6. To minimize errors, it is necessary to simplify operations for interval arithmetic.
In the previous example, I1(I2 + I3) gives us the desired result.
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Chapter 2

Basic notions of ordinary differential
equations

In this chapter, we introduce some basic notions of ordinary differential equations (ODEs).
More precisely, we provide results concerning existence, uniqueness, and continuity of solutions
for ODEs (with respect to initial conditions).

More precisely, we establish the fundamental theorem of linear systems and provide results
concerning existence, uniqueness, and continuity of solutions to ODEs (with respect the initial
conditions). We introduce a study of linear systems of the form ẋ = Ax, where x ∈ Rn and A
is an n× n matrix and solving the associated nonhomogeneous linear systems.

Definition 6. Let X be a set. A function d : X × X −→ R+ is called a metric if it satisfies
the following properties

d(x,y) = 0⇔ x = y, (positive definitness),

d(x,y) = d(y,x), for all x,y ∈ X (symmetric),

d(x,z) ≤ d(x,y) + d(y,z), for all x,y,z ∈ X (triangle inequality).

A paire (X ,d), where d is a metric is called a metric space.

Example 7. X = C([0,1]) = {f : f is continuous on [0,1]},

d1(f,g) =

∫ 1

0
|f(x)− g(x)|dx,

d∞(f,g) = maxx∈[0,1]|f(x)− g(x)|,

d2(f,g) =

(∫ 1

0
|f(x)− g(x)|2dx

)1/2

.

(X ,d1), (X ,d2), and (X ,d∞) are a metric spaces.
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Definition 7. Let (X ,d) be a metric space. A sequence (xn) in X is called a Cauchy sequence
if for any ε > 0, there is an nε ∈ N such that

d(xm,xn) < ε, for any m,n ≥ nε.

Theorem 2.1. A convergent sequence in a metric space is a Cauchy sequence.

Proof 2.2. Suppose that (xn) is a sequence which converges to x. Let ε > 0, then there is an
N ∈ N such that d(xn,x) < ε/2, for all n ≥ N. Let m, n ≥ N, then

d(xm,xn) ≤ d(xm,x) + d(x,xn) < ε/2 + ε/2 = ε,

hence (xn) is a Cauchy sequence.

Note that the converse of this theorem is not true. For example, let X = (0,1], then the

sequence
(

1

n

)
is a Cauchy sequence but converges to 0, which is not in X.

Definition 8. A metric space (X ,d) is said to be complete if every Cauchy sequence in X
converges (to a point in X .)

Definition 9. A norm on a linear space X is a function ‖, ‖ : X −→ R with the following
properties

‖x‖ ≥ 0, for all x ∈ X , (nonnegative),

‖λx‖ = |λ|‖x‖, for all λ ∈ R or C, x ∈ X , (homogeneous),

‖x+ y‖ ≤ ‖x‖+ ‖y‖, for all x,y ∈ X , (triangular inequality),

‖x‖ = 0 =⇒ x = 0, (strictly positive).

(X ,‖.‖) is a normed linear space.

Example 8. Let f ∈ X = C([0,1]), we define ‖f‖∞ := sup{‖f(t)‖, t ∈ [0,1]}. Then (X ,‖.‖∞)

is a normed linear space.

Example 9. Let us show that (X ,‖.‖)C(I) is a complete metric space.

For the proof, let (αn)n≥0 a Cauchy sequence in X , then for t ∈ I, (αn(t))n≥0 is a Cauchy
sequence in Bε(x0) := {x ∈ Rn, ‖x− x0‖ ≤ ε} and then converges. Let us denoted the limit
by α(t). Let ε > 0, then there exists n0 ∈ N such that

‖αn − αm‖C(I) <
ε

3
, for n,m ≥ n0.

For all t ∈ I, n ≥ n0,

‖α(t)− αn(t)‖ ≤ ε

3
. (2.1)
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Let t0 ∈ I, by the triangular inequality, we have

‖α(t0)− α(t)‖ ≤ ‖α(t0)− αn0(t0)‖+ ‖αn0(t0)− αn0(t)‖+ ‖αn0(t)− α(t)‖, (2.2)

≤ 2ε

3
+ ‖αn0(t0)− αn0(t)‖, by (2.1). (2.3)

As αn0 is bounded and using the previous inequality, it follows that α is bounded. αn0 is
continuous, then there exists δ > 0 such that

‖α(t0)− α(t)‖ < ε

3
, for all t ∈ Bε(δ). (2.4)

By (2.3), we get

‖α(t0)− α(t)‖ < ε, for all t ∈ Bε(δ). (2.5)

This shows that α in continuous at t0. We have shown that α ∈ X and (2.5) implies that
(αn)n≥0 converges to α.

2.1 Contraction mapping theorem

Definition 10. Let (X , d) denote a metric space and consider a function T : X −→ X . We
say that x ∈ X is a fixed point of T if T (x) = x and it is globally attracting if

lim
n−→∞

Tn(x) = x for all x ∈ X .

Suppose that there exists p ∈ N+ such that T p(x) = x, then we say that x is periodic and the
integer p is called the period of x. Notice that x is periodic of period np, for all n ∈ N+

Example 10. The three fixed points of the function f(x) = x3 are 0,1 and -1. The function
g(x) = x2 − 1 has two fixed point 1+

√
5

2 (called golden number) and 1−
√

5
2 . 0 and -1 lie on the

periodic orbit of period 2 because g(0) = −1 and g(−1) = 0, g(−1) = 0 and g(0) = −1.

Definition 11. A function T : X −→ X is a contraction if there exists a real number λ ∈ [0,1)

such that

d(T (x),T (y)) ≤ λd(x,y), for all x,y ∈ X .

λ is called a contraction constant.

The next theorem is fundamental. It shows that a contraction, viewed as a dynamical system,
has a globally attracting fixed point.

Theorem 2.3. Let (X ,d) be a complete metric space. Assume that the function T : X −→
X is a contraction with contraction constant λ. Then T has a unique fixed point x̄ ∈ X .
Furthermore, for any x ∈ X ,

15



d(Tn(x),x̄) ≤ λn

1− λ
d(T (x),x).

Proof 2.4. Let us prove the uniqueness of the fixed point. Suppose that T (x1) = x1 and
T (x2) = x2. As T is a contraction and x1, x2 fixed points, we have

d(T (x1),T (x2)) ≤ λd(x1,x2) and d(T (x1),T (x2)) = λd(x1,x2).

Therefore d(x1,x2) ≤ λd(x1,x2). If x1 6= x2, then d(x1,x2) 6= 0 and this implies that λ ≥ 1, a
contradiction !

For the existence of the fixed point, let us consider the sequence of iterates {Tn(x)}∞n=1,
with x ∈ X . By the contraction mapping, it follows that

d(Tn+1(x),Tn(x)) ≤ λd(Tn(x),Tn−1(x)) ≤ ..... ≤ λnd(T (x),x).

By applying the triangle inequality in definition 6 and using this result, it follows that

d(Tn+p(x),Tn(x)) ≤ d(Tn+p(x),Tn+p−1(x)) + ....+ d(Tn+1(x),Tn(x))

≤ (λn+p−1 + ...+ λn)d(T (x),x)

≤ λn(1 + λ+ ...+ λp−1)d(T (x),x)

≤ λn

1− λ
d(T (x),x).

Because 0 ≤ λ < 1, the sequence {λn}∞n=1 converges to zero and {Tn(x)}∞n=1 is a Cauchy
sequence. Since X is complete, this sequence converges to some point x̄ ∈ X . Let us prove
that x̄ is a fixed point of the map T. Because the two sequences {Tn+1(x)}∞n=0 and {Tn(x)}∞n=1

are the same, we have that lim
n−→∞

Tn+1(x) = x̄. T is continuous by the contraction property
and

d(Tn+1(x),T (x̄)) = d(T (Tn(x)),T (x̄)) ≤ λd(Tn(x),x̄).

By the continuity of T , it implies that

lim
n−→∞

Tn+1(x) = lim
n−→∞

T (Tn(x)) = T (x̄).

To obtain the inequality, pass to the limit as p −→∞ in

d(Tn+p(x),Tn(x)) ≤ λn

1− λ
d(T (x),x)

to obtain
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d(Tn(x),x̄) ≤ λn

1− λ
d(T (x),x).

Example 11. Let f be a continuous function on the interval [−1, 1] and consider the operator

Tf(x) = sin(2πx) + λ

∫ 1

−1

f(y)

1 + (x− y)2
dy.

We are going to find conditions on λ such that T has a unique fixed point and give a best
estimation for λ.

1) Tf ∈ C([−1,1]).

Abstract: x −→ sin(2πx) is continuous. x −→ 1

1 + (x− y)2
is continuous for all y, as integra-

tion is continuous, x −→ Tf(x) is continuous.

Detailed :
1

1 + (x− y)2
− 1

1 + (x+ h− y)2
=

(x+ h− y)2 − (x− y)2

(1 + (x− y)2)(1 + (x+ h− y)2)
,

≤ (x+ h− y)2 − (x− y)2 −→ 0, as h −→ 0.

This implies that

|Tf(x+ h)− Tf(x)| ≤ ‖f‖∞λ
∫ 1

−1
((x+ h− y)2 − (x− y)2)dy −→ 0, as h −→ 0.

2) choose λ so that T is a contraction.
a) Rough estimate: Since 1 + (x− y)2 > 1, we have

‖Tf − Tg‖∞ = λ sup
x∈[−1,1]

∣∣∣ ∫ 1

−1

f(y)− g(y)

1 + (x− y)2
dy
∣∣∣,

≤ λ sup
x∈[−1,1]

∫ 1

−1

∣∣f(y)− g(y)
∣∣dy,

≤ λ‖f − g‖∞
∫ 1

−1
dy,

= 2λ‖f − g‖∞.

Pick λ <
1

2
, then T is a contraction with respect to the norm on C([−1,1]).

b) better estimate:

‖Tf − Tg‖∞ ≤ λ‖f − g‖∞ sup
x∈[−1,1]

∫ 1

−1

1

1 + (x− y)2
dy,

≤ λ‖f − g‖∞ sup
x∈[−1,1]

(arctan(x+ 1)− arctan(x− 1)),

= λ‖f − g‖∞ · 2 arctan(1).
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Pick λ <
1

2 arctan(1)
≈ 0.6366 to get a contraction. Larger than in a).

For all λ <
1

2 arctan(1)
, the map T has a unique fixed point, i.e. there exists f ∈ C[−1,1] such

that

Tf(x) = sin(2πx) + λ

∫ 1

−1

f(y)

1 + (x− y)2
dy = f(x).

2.2 Existence and uniqueness of ODEs

In this section we will prove the basic existence and uniqueness theorem for ordinary differential
equations.

Definition 12. We consider f : U −→ Rn, be a continuous function defined on an open set
U ⊂ Rn. A differentiable function φ : I −→ U, with I an open interval of R is the solution of
the differential equation

ẋ :=
dx

dt
= f(x)

if

φ

dt
(t) = f(φ(t)), for all t ∈ I.

Next, we focus on solutions to the initial value problem (IV P ), i.e.

ẋ = f(x), x(t0) = x0,

given t0 ∈ R and x0 ∈ Rn. We begin by starting a simple lemma, whose proof follows directly
from differentiation and integration.

Lemma 2.5. Consider the initial value problem ẋ = f(x) satisfying x(t0) = x0, with t0 ∈ I,
and suppose that f(x) is continuous. Then φ is a solution of the IVP if and only if

φ(t) = x0 +

∫ t

t0

dφ

ds
(s)ds = x0 +

∫ t

t0

f(φ(s))ds.

Proof 2.6. If x(t) is a continuous function on I that satisfies the previous integral equation,
then

x(t0) = x0 and ẋ(t) =
d

dt

∫ t

t0

f(x(s))ds = f(x(t)) ∀t ∈ I.
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By the fundamental theorem of calculus since f(x(t)) ∈ C(I), x(t) is differentiable and satisfies
the initial value problem, for all t ∈ I.
Conversely, if x(t) is a solution of the initial value problem for all t ∈ I, then x(t) is differen-
tiable, hence continuous on I and x(t) ∈ U for all t ∈ I, therefore

ẋ(t) = f(x(t)) =⇒ x(t) =

∫ t

0
f(x(s))ds+ c, for all t ∈ I.

Clearly c = x(t0) = x0. Thus x(t) satisfies the integral equation for all t ∈ I.

2.2.1 Existence and uniqueness to solutions of ODEs

We consider two metric spaces (X, d1) and (Y,d2) and a function f : X −→ Y. f is Lipschitz
if there exists a real constant K ≥ 0 such that

d2(f(x),f(y)) ≤ Cd1(x,y), for all x,y ∈ X.

The smallest constant C satisfying this inequality is denoted by Lip(f) := C and is called a
Lipschitz constant.

Remark 7. f is locally Lipschitz if every point in U ⊂ X has a neighborhood such that f
restricted to that neighborhood is Lipschitz.

Theorem 2.7. Let U ⊂ Rn and open set and f : U −→ Rn be a Lipschitz function. Then
there exists l > 0 and a solution φ : (t0 − l,t0 + l) −→ Rn to the initial value problem
ẋ = f(x), x(t0) = x0 for any t0 ∈ R and x0 ∈ U. Furthermore, if ψ is another solution to the
initial value, then φ(t) = ψ(t) on their common domain of definition.

Proof 2.8. Let us consider ‖.‖ the norm on Rn and choose ε such that Bε(x0) ⊂ U. By
assumption f is Lipschitz and hence there exist positive constants C and M such that

‖f(x)− f(y)‖ ≤ C‖x− y‖ and ‖f(x)‖ ≤M, for all x,y ∈ Bε(x0).

Using Lemma 2.5, it is sufficient to prove the existence and uniqueness of φ such that

φ(t) = x0 +

∫ t

t0

dφ

ds
(s)ds = x0 +

∫ t

t0

f(φ(s))ds. (2.6)

The strategy for the proof is to define a function space X within which we expect to find a
solution and define a contraction T : X −→ X . This implies that there exists a unique fixed
point and we expect that this fixed point will be a solution of (2.6). Here the domain of the
elements of the function space should be an interval I ⊂ R since solutions are functions of
time.
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Choose l such that

l < min{ ε
M
,

1

C
} set I := (t0 − l,t0 + l) and define

X := {α : I −→ Bε(x0), α ∈ C0, Lip(α) < C}.

We endow the space X with the C − norm, i.e

‖α‖C0(I) := sup{‖α(t)‖, t ∈ I}.

Then (X ,‖.‖)C(I) is a complete metric space, see the next example. For α ∈ X , define

T (α(t)) := x0 +

∫ t

t0

f(α(s))ds.

Remark that T (α) = α if and only if α satisfies (2.6). To apply the contraction mapping
theorem, we need to prove that T is well defined and it is a contraction.

At the initial condition time t0, we have

T (α(t0)) = x0 +

∫ t0

t0

f(α(s))ds = x0.

Furthermore, given t1,t2 ∈ I,

∣∣∣∣∣∣T (α(t2))− T (α(t1))
∣∣∣∣∣∣ =

∣∣∣∣∣∣ ∫ t2

0
f(α(s))ds−

∫ t1

0
f(α(s))ds

∣∣∣∣∣∣,
=
∣∣∣∣∣∣ ∫ t2

t1

f(α(s))ds
∣∣∣∣∣∣,

≤
∣∣∣ ∫ t2

t1

Cds
∣∣∣,

= C|t2 − t1|.

This implies that Lip(T (α)) ≤ C. Setting t1 = t and t2 = t0, we get

‖T (α(t))− x0‖ ≤ C|t− t0| ≤ Cl < ε, for all t ∈ I
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and hence, T (α) : I −→ Bε(x0) is well defined. For the contraction, let α1,α2 ∈ X , then

‖T (α1)− T (α2)‖ = sup
t∈I
‖T (α1)(t)− T (α2)(t)‖,

= sup
t∈I

∣∣∣∣∣∣ ∫ t

t0

f(α1)(s)ds−
∫ t

t0

f(α2)(s)ds
∣∣∣∣∣∣,

≤ sup
t∈I

∫ t

t0

C‖α1(s)− α2(s)‖ds,

≤ C‖α1 − α2‖C0 sup
t∈I

∫ t

t0

ds,

≤ Cl‖α1 − α2‖.

Since Cl < 1, then T : X −→ X is a contraction and hence has a unique fixed point ᾱ of
ẋ = f(x), x(0) = x0 in X over the interval I.

Remark 8. Under the hypothesis of the Fundamental Existence-Uniqueness Theorem, if x(t)

is the solution of the initial value problem on an interval I, then the second derivative ẍ is
continuous on I. For the proof, remark that

ẍ =
d

dt
[f(x(t))] = Df [x(t)]ẋ(t) = Df [x(t)]f(x(t)) ∈ C(I).

By the chain rule, since x(t) ∈ U, Df(x(t)) and f(x(t)) are continuous for all t ∈ I.

Remark 9. Note that for this proof, we are limited to a small time interval of length 2l, where

l < min{ ε
M
,

1

C
}. We have only proven uniqueness of solutions over the family of functions

Lip(α) ≤ C, as opposed to all differentiable functions. In the last line of the proof, we
demonstrate that solutions to an IV P are Lipschitz continuous as a function of the initial
value. First let us introduce the following fundamental result introduced by Gronwall1. Note
that the applications to the theory of differential equations are later date. In the respect, we
mention the name of the mathematician Richard Bellman.2

Lemma 2.9. (Gronwall´s inequality)
Let us consider a,α1 and α2 positive constants. Assume that φ(t) and ψ(t) are positive
continuous functions for t0 ≤ t ≤ t0 + a. If

φ(t) ≤ α2 + α1

∫ t

t0

ψ(s)φ(s)ds, (2.7)

then

φ(t) ≤ α2e
α1

∫ t
t0
ψ(s)ds

.

1Thomas Hakon Gronwall, 1877-1932, was a Swedish mathematician.
2Richard Ernest Bellman, 1920-1984, was an American applied mathematician.
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Proof 2.10. From 2.7, we derive

φ(t)

α2 + α1

∫ t
t0
ψ(s)φ(s)ds

< 1.

Multiplication with α1ψ(t) and integration, yields

∫ t

t0

α1ψ(s)φ(t)

α2 + α1

∫ t
t0
ψ(s)φ(s)ds

< α1

∫ t

t0

ψ(s)ds.

This implies that

ln(α1

∫ t

t0

ψ(s)φ(s)ds+ α2)− ln(α2) ≤ α1

∫ t

t0

ψ(s)ds,

which produces

α1

∫ t

t0

ψ(s)φ(s)ds+ α2 ≤ α2e
α1

∫ t
t0
ψ(s)ds

.

Applying the estimation (2.7) again, but now to the left hand side, yields the required in-
equality.

Remark 10. Remark that if α2 = 0, the estimation implies that φ(t) = 0, t0 ≤ t ≤ t0 + a.

We now use Gronwall’s inequality to study the dependence of a solution on its initial condition.

Theorem 2.11. Consider the equation ẋ(t) = f(x(t)), t ≥ 0 and f Lipschitz continuous with
Lipschitz constant C. Consider the two initial value problems

ẋ = f(x(t)), x(0) = x0 ∈ Rn, solution x0(t) on interval I,
ẋ = f(x(t)), x(0) = x0 + δ, solution xε(t) on interval I, where δ ∈ Rn.

If ‖δ‖ ≤ ε, (ε real, positive), we have

‖x0(t)− xε(t)‖ ≤ εeCt on the interval I.

Proof 2.12. The solutions of the two initial value problems are given by

x0(t) = x0 +

∫ t

0
f(x0(s))ds, xε(t) = x0 + δ +

∫ t

0
f(xε(s))ds.
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Substitution and applying the triangular inequality, produces

‖x0(t)− xε(t)‖ ≤ ‖δ‖+

∫ t

0
‖f(x0(s))− f(xε(s))‖ds,

and using the Lipschitz condition,

‖x0(t)− xε(t)‖ ≤ ε+ C

∫ t

0
‖x0(s)− xε(s)‖ds.

Now by Gronwall’s inequality, with α1 = C, ψ(t) = 1, φ(t) = ‖x0(t)− xε(t)‖ and α2 = ε give
us the desired inequality.

Example 12. Let us consider the two differential equations

a) ẋ = x2, x(0) = x0 and b)ẋ = 3x2/3, x(0) = 0.

For a) suppose that x0 > 0. By the fundamental existence and uniqueness theorem, this IV P
has a unique solution given by

φ(t) =
x0

1− x0t
, defined for all −∞ < t < 1/x0.

For b), we can see that f is not Lipschitz and in this case, it is possible to have nonunique
solutions. Observe the two solutions for b)

φ1(t) ≡ 0, φ2(t) =

t3, t ≥ 0,

0, t ≤ 0.

This implies that the both φ1(t) and φ2(t) equal zero but φ1(t) and φ2(t) are distinct on any
interval about t0.

2.2.2 Linear Systems

Definition 13. Let A be and n× n matrix, we defined the exponential matrix eAt by

eAt =
∞∑
k=0

Aktk

k!
, for all t ∈ R.

Remark 11. Note that the series
∞∑
k=0

Aktk

k!
is absolutely and uniformly convergent for all

|t| ≤ t0. This is proved by using the Weierstrass M-Test.
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Let A be an n× n matrix and consider the initial value problem

ẋ = Ax, x(0) = x0 ∈ Rn (2.8)

We are going to establish that (2.8) has a unique solution defined by

x(t) = eAtx0, for all t ∈ R.

Remark 12. This result is similar for the one dimension case ẋ = ax, x(0) = x0 ∈ R, where
the unique solution is given by x(t) = x0e

at.

To prove this theorem, we start by computing the derivative of the exponential function eAt

by using the result that two convergent limit processes can be interchanged if one of them
converges uniformly.

Lemma 2.13. Let A be an n× n matrix, then

d

dt
eAt = AeAt.

Proof 2.14. By definition, we have

d

dt
eAt = lim

h−→0

eA(t+h) − eA(t)

h
,

= lim
h−→0

eAt
eAh − I

h
,

= eAt lim
h−→0

lim
k−→∞

(A+
A2h

2!
+ .....+

Akhk−1

k!
),

= AeAt.

Remark 13. The last equality follows by the Remark 11, since the series defining eAh con-
verges uniformly for |h| < 1.

Theorem 2.15. (Fundamental Theorem for Linear Systems)

We consider A to be an n × n matrix, then the initial value problem (2.8) has a unique
solution given by x(t) = eAtx0, for all t ∈ R.

Proof 2.16. By Lemma (2.13), if x(t) = eAtx0 then we have

ẋ(t) =
d

dt
eAtx0 = AeAtx0 = Ax(t), for all t ∈ R,
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and x(0) = Ix0 = x0, this implies that x(t) = eAtx0 is a solution. For uniqueness, let x(t) be
any solution of the initial value problem and set z(t) = e−Atx(t), then we have

ż(t) = −Ae−Atx(t) + e−Atẋ(t), for all t ∈ R,

= −Ae−Atx(t) + e−AtAx(t), for all t ∈ R,

= −Ae−Atx(t) +Ae−Atx(t), for all t ∈ R,

= 0, for all t ∈ R, since e−At and A commute.

Thus, z(t) is a constant. For t = 0, we get z(t) = x0 and therefore any solution of the initial
value problem is given by x(t) = eAtz(t) = eAtx0.

Example 13. Let A be an n × n matrix. Suppose that T : E −→ E, x −→ Ax, is a linear
transformation of Rn that leaves a space E ⊂ Rn invariant. If x(t) is the solution to the initial
value problem,

ẋ(t) = Ax(t), x(0) = x0 ∈ E,

then x(t) ∈ E for all t ∈ R.
For the proof, since T (x) ∈ E for all x ∈ E and T (x) = Ax then T (x0) ∈ E for x0 ∈ E.

Because E is a linear subspace of Rn, it follows that tAx0 ∈ E. By induction, we have that

(
tk

k!
)Akx0 ∈ E, for all k ∈ N. Therefore

N∑
k=0

Aktkx0

k!
∈ E,

since E is a linear subspace of Rn. Since a closed subspace of a complete metric space is
complete, it follows that E is a complete normed linear space, i.e every Cauchy sequence in
E converges to a vector in E. Thus, for all t ∈ R,

lim
N−→∞

N∑
k=0

Aktkx0

k!
= eAtx0 ∈ E.

Therefore, by the fundamental theorem of linear system,

x(t) = eAtx0 ∈ E, for all t ∈ R.

Remark 14. In practice, if A is an n × n matrix, we will use the algebraic technique of
diagonalization to reduce the linear system ẋ = Ax, x(0) = x0 ∈ Rn. Let us introduce this
result from linear algebra in the case A has real and distinct eigenvalues.
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Theorem 2.17. Let λ1,λ2,....,λn be real and distinct eigenvalues of an n × n matrix A. If
{v1,v2,....,vn} is a set of corresponding eigenvectors, then it forms a basis for Rn. The matrix
P = {v1,v2,....,vn} is invertible and

P−1AP = diag{λ1,λ2,.....,λn}.

Remark 15. Let us define the linear transformation of coordinates z = P−1x, where P is
an invertible linear transformation defined in Theorem (2.17). We would like to reduce the
system (2.8) to an uncoupled linear system. We get

x = Pz and ż = P−1ẋ = P−1Ax = P−1APz.

By theorem (2.17), it follows that ż = diag{λ1,λ2,.....,λn}z, which is an uncoupled linear
system. The solution is given by

z(t) = diag{eλ1t,eλ2t,....,eλnt}z(0).

Since x(t) = Pz(t) and z(0) = P−1x(0), it follows that the solution to the initial value problem
(2.8) is given by x(t) = PD(t)P−1x(0), where D(t) is the diagonal matrix

D(t) = diag{eλ1t,eλ2t,....,eλnt}.

Corollary 2.18. By Theorem (2.17), the solution of the system (2.8) is given by

x(t) = PD(t)P−1x(0), D(t) = diag{eλ1t,eλ2t,....,eλnt}.

Example 14. Solve the initial value problem

ẋ = Ax, x(0) = x0 where A =

1 0 0

1 2 0

1 0 −1

 .

The eigenvalues of A are λ1 = 1, λ2 = 2 and λ3 = −1. The associate eigenvectors are

v1 = {2,−2,1}, v2 = {0,1,0} and v3 = {0,0,1}. So P =

 2 0 0

−2 1 0

1 0 1

 and the solution is given
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by

x(t) = PD(t)P−1x(0) =
1

2

 2 0 0

−2 1 0

1 0 1


e

t 0 0

0 e2t 0

0 0 e−t


 1 0 0

2 2 0

−1 0 2

x(0),

=
1

2

 2et 0 0

2e2t − 2e−t 2e2t 0

et − e−t 0 2e−t

x(0).

2.3 Nonhomogeneous Linear Systems

In this section we consider the nonhomogeneous linear systems

ẋ = Ax(t) + b(t),

where A is an n× n matrix and b(t) is a continuous vector valued function.

Definition 14. A fundamental matrix solution of ẋ = Ax is an n×n matrix function φ (non
singular) satisfying

φ̇(t) = Aφ(t), for all t ∈ R. (2.9)

Remark 16. By the Lemma 2.13, the matrix defined by φ(t) = eAt is a fundamental matrix
solution which satisfying φ(0) = Idn. Furthermore, any fundamental matrix solution φ(t) of
(2.9) is given by φ(t) = eAtK, with K a nonsingular matrix. We deduce that, once we have
found a fundamental matrix, we can easily solve the nonhomogeneous systems.

Theorem 2.19. Suppose that φ(t) is the fundamental matrix solution of ẋ = Ax, the solution
of the nonhomogeneous system ẋ = Ax(t) + b(t) with initial condition x(0) = x0 is unique
and is given by

x(t) = φ(t)φ−1(0)x0 +

∫ t

0
φ(t)φ−1(τ)b(τ)dτ (2.10)

Proof 2.20. By differentiating the function (2.10) above, we have

ẋ(t) = φ̇(t)φ−1(0)x0 + φ(t)φ−1(t)b(t) +

∫ t

0
φ̇(t)φ−1(τ)b(τ)dτ.
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As φ(t) is the fundamental matrix solution of ẋ = Ax, it implies that

ẋ(t) = A

[
φ(t)φ−1(0)x0 +

∫ t

0
φ(t)φ−1(τ)b(τ)dτ

]
+ b(t)

= Ax(t) + b(t).

Remark 17. If φ(t) = eAt, the solution of the nonhomogeneous linear system ẋ = Ax(t)+b(t)

is given by

x(t) = eAtx0 + eAt
∫ t

0
e−Aτ b(τ)dτ. (2.11)

Example 15. Use the Theorem (2.19) to solve the nonhomogeneous linear system

ẋ =

(
1 1

0 −1

)
+

(
t

1

)
, x(0) =

(
t

1

)
.

The eigenvalues are λ1 = 1, λ2 = −1, with associated eigenvectors v1 = (1,0)T and v2 =

(1,− 2)T . The fundamental matrix solution Φ(t), with Φ(0) = I is given by

φ(t) = eAt =

(
1 1

0 −2

)(
et 0

0 e−t

)(
1 1/2

0 −1/2

)
=

(
et (et − e−t)/2
0 e−t

)
.

Note that

φ−(t) =

(
e−t −(et − e−t)/2
0 et

)
= φ(−t),

and the solution of the initial value problem is given by

x(t) =

(
et (et − e−t)/2
0 e−t

)(
1

0

)
+

(
et (et − e−t)/2
0 e−t

)∫ t

0

(
−e−τ (e−τ − eτ )/2

0 eτ

)(
τ

1

)
dτ,

=

−t− 2 +
5

2
et +

1

2
e−t

1− e−t

 .

Remark 18. There are many interesting properties that can be study just by using the nature
of the eigenvalues of the matrix A in (2.8). The stability condition is one such property.
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2.4 Stability for Linear Systems

Definition 15. Recall the system (2.8), ẋ = Ax, x(0) = x0 ∈ Rn. An equilibrium solution
of (2.8) is the vector xe such that Axe = 0. It is asymptotically stable if there exists δ > 0

such that
‖x(t)− xe‖ −→ 0, as t −→∞, whenever ‖x0 − xe‖ ≤ δ. (2.12)

If the equilibrium solution xe est asymptotically stable, the system is called asymptotically
stable, otherwise it is called unstable.

Remark 19. If the system is perturbed a little bit from the position of equilibrium, then by
the asymptotic stability, this system will eventually return to that position after making small
oscillations.

Theorem 2.21 (Stability theorem for the homogeneous Linear systems). If all the eigenvalues
of the matrix A have negative real part, the system is asymptotically stable. It is unstable if
at least one eigenvalue has a positive real part.

Proof 2.22. Suppose that the matrix A is diagonalizable, there exists P such that P−1AP =

D = diag(λ1,...,λn). This implies that

eAt = PeDtP−1 = Pdiag(λ1,...,λn)P−1.

If λj = αj + iβj , j = 1,2,....,n, then eλjt = eαjteiβjt. And eλjt converges to zero, when
t −→∞ if and only if λj < 0.

Theorem 2.23. Let A be an n× n matrix and consider the nonhomogeneous Linear system

ẋ = Ax(t) + b, where b is a constant. (2.13)

An equilibrium solution x̄ of (2.13) is asymptotically stable if and only if all the eigenvalues
of A have negative real parts. If there exists at least one eigenvalue of A with positive real
part, this stable is unstable.

Proof 2.24. Consider (2.13) with b a constant vector. The stability of this system is given
by the eigenvalues of the matrix A. This can be shown as follows using the previous theorem.
Let x̄ be an equilibrium solution of (2.13) and define y(t) = x(t)− x̄(t). Then

ẏ(t) = ẋ(t)− ( ˙̄x)(t) = Ax(t) + b−Ax̄(t)− b = A(x(t)− x̄(t)) = Ay(t).

Thus x(t) −→ x̄(t) if and only if y(t) = 0.

Example 16 (Richardson model). Consider the following system of differential equations
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ẋ1(t) = k1x2 − α1x1 + g1,

ẋ2(t) = k2x2 − α2x2 + g2,
where g1,g2,α1,α2 are positive constants.

In matrix notation, this system can be written as

(
ẋ1

ẋ1

)
=

(
−α1 k1

k2 −α2

)(
x1

x1

)
+

(
g1

g2

)
.

The eigenvalues of the matrix A are

λ =
−(α1 + α2)±

√
(α1 − α2)2 + 4k1k2

2
.

Thus α1α2 − k1k2 > 0, both the eigenvalues of A are negative real parts and then the equi-
librium solution x̄(t) is asymptotically stable. If α1α2 − k1k2 < 0, one of the eigenvalue has
positive real part and the system is unstable.
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Chapter 3

Rigorous computations for finite
dimensional problems

The goal if this chapter is to provide a constructive approach for proving the existence of zeros
of a function defined on a finite dimensional Banach space X (in our case Rn or Cn). We are
going to present an effective computational approach to the following two problems. Given a
differentiable function f : X −→ Y between Banach spaces, does there exist x ∈ X such that
f(x) = 0 and, if so, provide an estimate of x.

3.1 A Newton-like operator

Let us start with a trivial proposition that sets the stage for our strategy for finding zeros of
a function.

Proposition 3.1. We consider X = Rn or Cn, and U ,V ⊂ X be open sets. Let f : U −→ V.

Suppose that A : X −→ X is an invertible linear map and let defined by T (x) := x−Af(x).

If T (x̄) = x̄ then f(x̄) = 0.

Remark 20. The previous proposition is very important. It allows us to replace the problem
or directly finding a root of f with that of proving the existence of a fixed point of T. If the
operator T is a contraction, it provides existence and local uniqueness of a fixed point of T.
Furthermore, it gives bounds on the location of the fixed point x as a function of the an initial
guess (recall theorem 2.3). Therefore, the problems we are trying to prove are reduced to
finding an invertible linear map A that makes T a contraction.

Example 17. In the one dimensional case, let f ∈ C(R,R), then the map T : R −→ R defined

by T (x) := x − f(x)

f ′(x)
is used iteratively in Newton´s method to find an approximate value
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to the root of f. More explicitly, given an initial value x0 ∈ R, then inductively we define
xk+1 = T (xk). The hope is that lim

k−→∞
xk exists and is the root. Assume that

lim
k−→∞

xk = x̄.

If T exists and is continuous at x̄ then f ′
(x̄) 6= 0. Observe that T (x̄) = x̄ implies f(x̄) = 0.

With this in mind, and to see how this relates to the contraction mapping theorem assume
f(x̄) = 0 and f ′

(x̄) 6= 0. Let |ε| small, then∣∣∣T (x̄+ ε)− T (x̄)
∣∣∣ =

∣∣∣x̄+ ε− f(x̄+ ε)

f ′(x̄+ ε)
− (x̄− f(x̄)

f ′(x̄)

∣∣∣,∣∣∣T (x̄+ ε)− T (x̄)
∣∣∣ =

∣∣∣ε− f(x̄+ ε)

f ′(x̄+ ε)

∣∣∣,∣∣∣T (x̄+ ε)− T (x̄)
∣∣∣ ≈ ∣∣∣ε− f(x̄) + εf

′
(x̄)

f ′(x̄+ ε)

∣∣∣,∣∣∣T (x̄+ ε)− T (x̄)
∣∣∣ ≈ |ε|∣∣∣1− f

′
(x̄)

f ′(x̄+ ε)

∣∣∣.

Since ε = (x̄ + ε) − x̄, then set Lip(T ) ≈
∣∣∣1 − f

′
(x̄)

f ′(x̄+ ε)

∣∣∣, which is a contraction constant for

Newton’s near x̄. It is an extremely strong contraction in a sufficiently small neighborhood of
a nondegenerate zero of f . In the next section, this example is meant to motivate the idea of
setting A = A(x) := Df−1(x̄).

Definition 16. Let U ⊂ Rn be an open set and f : U −→ Rn be a C1 map. Suppose that
Df(x) is invertible. The Newton operator is defined by

T (x) := x−Af(x), (3.1)

where A is an approximation of Df−1(x). We write A ≈ Df−1(x).

Remark 21. Note that A is not necessary equal Df−1(x). The approach of our method is as
follows. Let x̄ an initial guess for a zero of f, i.e. f(x̄) ≈ 0. In practice, we obtain the value
of x̄ using Newton’s method. Since x̄ is an approximate value of the exact solution, choose
A ≈ Df−1(x̄) and define the map T (x) := x−Af(x). The question is now to prove that T is
a contraction. In this case, we will be able to find the root of f.

Remark 22. If f(x̄) = 0 and Df−1(x̄) is invertible, then in the small neighborhood of x̄,
the operator T is a contraction with small contraction constant. This is given by the same
argument as the example (17). But we know that for an n× n matrix, the cost of computing
the inverse is of order n3. Thus for high dimensional problems we lost the regularity of the
solution, because repeatedly computing the inverse is expensive.
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3.2 The radii polynomial approach in finite dimension

The method of radii polynomials has been employed in mathematically rigorous computer as-
sisted study of a wide variety of problems in differential equations and dynamical systems. It
is an efficient tool for bounding the smallest and largest neighborhoods on wich a Newton-like
operator associated with a nonlinear equation is a contraction mapping. The method has been
introduced to study solutions of ordinary, partial, and delay differential equations, such has
periodic orbits, equilibria and solutions of initial value problems (IVPs). In this section, we
adapt the method of radii polynomials approach in finite dimensional problems.

In the following, we consider the sup norm on R, i.e. given x = (x1,....,xn) ∈ Rn, we de-
fine

‖x‖∞ := maxk=1,...,∞{|xk|}.

The closed ball of radius r centred at x is denoted by

Br(x) := {z ∈ R, ‖x− z‖∞ ≤ r}.

Theorem 3.2. We consider U ⊂ Rn and let T = (T1,...,Tn) ∈ C1(U,Rn), where Tk : Rn −→ R.
Consider x̄ ∈ U and suppose that Y = (Y1,...,Yn) ∈ Rn, Z(r) = (Z1(r),...,Zn(r)) ∈ Rn provide
the following bounds:

|Tk(x̄)− x̄k| ≤ Yk and sup
b,c∈Br(0)

|DTk(x̄+ b)c| ≤ Zk(r). (3.2)

If ‖Y + Z(r)‖∞ < r, then T : Br(x̄) −→ Br(x̄) is a contraction mapping, with contraction
constant

κ =
‖Z(r)‖
r

< 1.

In particular, there exists a unique x̂ ∈ Br(x̄) such that T (x̂) = x̂.

Proof 3.3. By applying the Mean Value Theorem to Tk, for any x,y ∈ Br(x̄) and k = 1,....,n

Tk(x)− Tk(y) = DTk(z)(x− y), for some z ∈ {tx+ (1− t)y, t ∈ [0,1]} ⊂ Br(x̄).

This implies that∣∣∣Tk(x)− Tk(y)
∣∣∣ =

∣∣∣DTk(z) r(x− y)

‖x− y‖∞

∣∣∣‖x− y‖∞
r

≤ Zk(r)
‖x− y‖∞

r
. (3.3)

If y = x̄ then
‖x− y‖∞

r
=
‖x− x̄‖∞

r
≤ 1. This implies that∣∣∣Tk(x)− Tk(x̄)

∣∣∣ ≤ Zk(r).
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By the triangular inequality, one has that∣∣∣Tk(x)− x̄k
∣∣∣ ≤ ∣∣∣Tk(x)− Tk(x̄)

∣∣∣+
∣∣∣Tk(x̄)− x̄k

∣∣∣,
≤ Zk(r) + Yk,

≤ ‖Y + Z(r)‖∞,

< r.

That prove that T (Br(x̄)) ⊂ Br(x̄). By (3.3), it follows that

‖T (x)− T (y)‖∞ = max
k
{|Tk(x)− Tk(y)|} ≤ ‖Z(r)‖∞

‖x− y‖∞
r

.

Since ‖Z(r)‖∞ < ‖Y + Z(r)‖∞ < r, T is a contraction on Br(x̄), with a contraction constant

κ :=
‖Z(r)‖
r

.

Thus, by the contraction mapping theorem, T has a unique fixed point x̂ ∈ Br(x̄), such that
T (x̂) = x̂.

Remark 23. Remark that by the following splitting, Zk(r) is a polynomial.

DT (x̄+ b)c = [I −A ·Df(x̄)]c−A[Df(x̄+ b)−Df(x̄)]c, b,c ∈ Br(0),

= [I −A ·Df(x̄)]c̃r −A[Df(x̄+ b̃r)−Df(x̄)]c̃r, b̃,c̃ ∈ B1(0).

Definition 17. Given vectors Y and Z(r) in Rn satisfying (3.2) and T ∈ C1(U ,Rn), where
U ⊂ Rn an open set, the associate radii polynomials pk(r), k = 1,2,..,n are defined by

pk(r) := Yk + Zk(r)− r.

Using this definition, we can modify the previous theorem in the best way.

Corollary 3.4. Let f ∈ C1(U, Rn), where U ⊂ Rn is an open set. Suppose that A : Rn −→ Rn

is an invertible linear map and define

T (x) := x−Af(x).

Let Y, Z(r) satisfying (3.2), x̄ ∈ U. Let pk(r), k = 1,2,...,n be the radii polynomials. If there
exists r > 0 such that pk(r) < 0 for all k = 1,2,...,n, then there exists a unique x̂ ∈ Br(x̄)

such that T (x̂) = x̂, and hence, by Proposition 3.1, there exists a unique x̂ ∈ Br(x̄) such that
f(x̂) = 0.

Proof 3.5. By assumption, suppose that pk(r) < 0, k = 1,2,...,n for some r > 0. Hence

‖Y + Z(r)‖∞ = max
k
{|Tk(x)− Tk(y)|} < r.

By theorem (3.2) there exists a unique x̂ ∈ Br(x̄)) such that T (x̂) = x̂ and hence, by Propo-
sition (3.1) there exists a unique x̂ ∈ Br(x̄)) such that f(x̂) = 0.
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Proposition 3.6. Let us consider the radii polynomials pk(r), k = 1,2,...,n in Definition (16).

Define

I =
n⋂
i=1

I(i) :=
n⋂
i=1

{r > 0, pi(r) < 0}.

If I 6= ∅, then I is an open interval, an for any r ∈ I, the ball Bx̄(r) contains a unique solution
x̃ such that f(x̃) = 0. Note that x̃ is that same solution for all r ∈ I.

Proof 3.7. Assume that the highest degree of the polynomial nonlinearities of f(x) is n. Fix
i ∈ {1, ...,n}, then the coefficients of the radii polynomials will be of the form

pi(r) = a(i)
n r

n + a
(i)
n−1r

n−1 + ....+ a
(i)
1 r − r + a

(i)
0 .

with a
(i)
j ≥ 0, (because a(i)

j are the coefficients given by the norms in Y and Z(r)). for all

j = 1,....,n. Since I 6= 0, then a
(i)
1 − 1 < 0. Otherwise we would not be able to find r > 0

such that pi(r) < 0. By Descarte’s rule of signs and since I 6= 0, each radii polynomial pi has
exactly two positive real zeros that we denote by r

(i)
− < r

(i)
+ . Defining I(i) = (r

(i)
− , r

(i)
+ ), we

obtain that I =
n⋂

i=1

I(i). Let I := (r−,r+), this implies that I is an open interval.

Consider now r ∈ I. Hence pi(r) < 0, for all i = 1,...,n, and therefore

maxi=1,...,n{Yi + Zi(r)} = maxi=1,...,n(pi(r) + r) < r.

The result follows from Corollary (3.4).

Remark 24. Proposition (3.6) demonstrates that the radii polynomials approach provides
a strategy for obtaining bounds on the smallest ball Bx̄(r−) and the largest ball (given by
Bx̄(r+)) about the approximate solution on which the corresponding Newton-like operator is
a contraction mapping.

Remark 25. Note that the existence of r > 0 such that pk(r) < 0, k = 1,2,...,n, implies
the existence of a range of values I = (r−,r+) ⊂ R+ over which the inequalities are satisfied.
Using the fact that x̃ is the unique zero of f in Br(x̄), for all r ∈ I, the value r− provides
tight bounds for the location of the exact solution x̃ and r+ provides information about the
domain of isolation for x̃. This maximal interval is called the existence interval for the radii
polynomials and it will be determined by using Intlab to obtain the desired bounds. We can
conclude that if X 6= ∅, then one can present an explicit domain in which there exists a unique
root of f.

Let us consider two examples in one and two dimensions to demonstrate how the radii poly-
nomials are used in practice.
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Example 18. Application of radii polynomials for f(x) = x2 − x− 1.

Let us consider a simplest nonlinear example f(x) = x2−x−1.We want to prove the existence
of a root and provide useful bounds on the value of the root. Let x = 1.5 be an initial value.
To define the radii polynomial, we first need to construct T or equivalently we need to choose
A, with T (x) = x−Af(x). Here A is chosen based on Df(x)−1. We have

Df(x)−1 =
1

2.x0 − 1
=

1

2
= 0.50, set A = 0.50,

then T (x) = x− 0.50(x2 − x− 1). We need to find Y and Z(r) such that :

|T (x)− x| ≤ Y and sup
b,c∈Br(0)

(|DT (x+ b)c|) ≤ Z(r).

We have

|T (x)− x| = | − 0.50(x2 − x− 1)| = 0.125,

so define Y := 0.130. To compute Z(r), we can write

DT (x) = 1− 0.50(2x− 1) = 1.50− x.

Let b = ru and c = rv with u,v ∈ B1(0), then

|DT (x+ b)c| = |(1.50− (x+ b))c| = |(1.5− x− b)c| = |(1.50− 1.50− ru)rv| = | − r2uv|

and we get

sup
b,c∈Br(0)

(|DT (x+ b)c|) = r2 = sup
u,v∈B1(0)

|r2uv| = r2.

Let Z(r) = r2 then the associate Radii polynomial is

p(r) = Y + Z(r)− r = r2 − r + 0.130.

Note that p(r) < 0 for all r ∈ [0.16,0.80]. We can conclude that there exists a unique x̃ ∈
B1.5(0.16) = [1.34,1.66] such that f(x̃) = 0. Observe that the root 1+

√
5

2 ≈ 1.618 ∈ B0.16(1.5).

Using the quadratic formula we see that p(r) < 0 for all r ∈ [0.16,0.80].
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Figure 3.1: The radii polynomial p(r) = r2 − r + 0.130, and I = [0.16, 0.80], where the radii
polynomial is strictly negative.

Example 19. (The radii polynomial approach for a two-dimensional example) Consider the
FitzHugh-Nagumo equation

ẋ = f(x) =

(
x1(x1 − a)(1− x1)− x2

ε(x1 − γx2)

)
, (3.4)

at the parameter values (a,ε, γ) = (5, 1, 2).

An equilibrium solution x = (x1,x2) is a solution of f(x) = 0, where f : R2 −→ R2 given by
the rand-hand side of (3.4). let

Df(x̄) =

(
−3x̄2

1 + 2x̄1(1 + a)− a −1,

ε −ελ

)
.

In this two-dimensional example, the explicit exact formula for the inverse of Df−1(x̄) is

Df−1(x̄) =
1

ε− 2λεx̄1(1 + a)− 3λεx̄1

(
−ελ 1

−ε −3x̄2
1 + 2x̄1(1 + a)− a

)
.

Therefore, in this case, we set A := Df−1(x̄), and let T (x) := x− Af(x). To apply the radii
polynomial approach we compute the bounds Y and Z satisfying (3.2). First, realize that

T (x̄)− x̄ = −Af(x̄) = −Df−1(x̄)f(x̄),

=
1

ε− 2λεx̄1(1 + a)− 3λεx̄1

(
−ελ 1

−ε −3x̄2
1 + 2x̄1(1 + a)− a

)(
x̄1(x̄1 − a)(1− x̄1)− x̄2

ε(x̄1 − γx̄2)

)
.
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Using this expression, we can compute (for instance with interval arithmetic) a bound Y1,Y2

such that

|[T (x̄)− x̄]k| ≤ Yk, for k = 1,2.

The next step is to compute bounds Z1,Z2 such that

sup
b,c∈Br(0)

|DTk(x̄+ b)c| ≤ Zk(r), for k = 1,2.

Let us consider the following splitting

DT (x̄+ b)c = [I −A ·Df(x̄)]c−A[Df(x̄+ b)−Df(x̄)]c.

We have

Df(x̄+ b)−Df(x̄) =

(
−6x̄1b1 − 3b21 + b1(2 + 2a) 0

0 0

)
.

Let b = ur and c = vr with ‖u‖ ≤ 1 and ‖v‖ ≤ 1. This implies

DT (x̄+ b)c = [I −ADf(x̄)]︸ ︷︷ ︸
ε

c−A

(
−6x̄1b1 − 3b21 + b1(2 + 2a) 0

0 0

)
c,

DT (x̄+ b)c = ε

(
1

1

)
r −A

(
−6x̄1b1 − 3b21 + b1(2 + 2a) 0

0 0

)
c,

|DT (x̄+ b)c| ≤ ε

(
1

1

)
r + |A|

∣∣∣(−6x̄1b1 − 3b21 + b1(2 + 2a) 0

0 0

)(
v1r

v2r

)∣∣∣,
|DT (x̄+ b)c| ≤ ε

(
1

1

)
r + |A|

∣∣∣(−6x̄1u1v1r
2 − 3u2

1v1r
3 + u1v1r

2(2 + 2a)

0

)∣∣∣,
|DT (x̄+ b)c| ≤ ε

(
1

1

)
r + |A|

∣∣∣((6x̄1 + 2 + 2a)r2 + 3r3

0

)∣∣∣,
where the inequalities are considered component-wise. Let

Z2(r) := |A|

(
6x̄+ 2 + 2a

0

)
r2 and Z3(r) := |A|

(
3

0

)
r3.

The radii polynomials p1(r) and p2(r) are defined by(
p1(r)

p2(r)

)
= Z3(r) + Z2(r) + (ε− 1)

(
1

1

)
r + Y.
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It is important to realize that the definition of the radii polynomials is the same for any
approximate solution x̄ ∈ R2. This means that once we have derived explicit formulas of the
radii polynomials, we can use them for any x̄ that we obtained. We fixed (a,ε, γ) = (5, 1, 2),

and using Newton’s method, we computed the approximate solution

x̄ =

(
1.1292

0.5646

)
.

For each i = 1, 2, we could compute the interval I(i) on which each radii polynomial is negative.
Hence,

I =
2⋂

k=1

{r > 0 : pk(r) < 0},

= I(1) ∩ I(2).

We conclude that for all r ∈ I, Br(x̄) contains a unique solution x̂ such that f(x̂) = 0.

The first vector column is the coefficients of Z3(r), the second the coefficients of Z2(r), the
third the coefficients of Z1(r) and the last column represents the coefficients of Y. The codes
associated to this example can be found in annexe.
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Chapter 4

Galaktionov-Svirshchevskii’s
conjecture

4.1 Derivation of the Galaktionov-Svirshchevskii’s conjecture

The Galaktionov-Svirshchevskii’s conjecture originally comes from the study of the Kuramoto-
Sivashinsky (KS) equation, which is given by the semi-linear fourth order parabolic PDE

ut = −uyyyy − uyy + (uy)
2.

This model of equation was originally introduced to describe flame front propagation in tur-
bulent flows of gaseous combustible mixtures, but also have many applications in physics,
including 2D turbulence.

In [6], the authors Galaktionov and Svirshchevskii considered a modified KS equation of the
form

ut = −uyyyy − uyy + (1− λ)(uy)
2 + λ(uyy)

2,

where λ ∈ [0,1] is a constant which describes dynamical properties of hyper-cooled melt. They
modified yet again the equation and introduced an absorption term, in order to describe the
extinction phenomena, that is

ut = −uyyyy + u2
yy − 1.

Here the presence of the non Lipschitz absorption term −1 implies that the problem is rather
consistent for the Cauchy problem, as we can impose the zero contact angle at each interface.
Finally, in order to face the question of the maximal regularity of the solutions at the interfaces,
they considered the signed version of this PDE for solutions of changing signs, that is

ut = −uyyyy + u2
yy − sign(u), (y,t) ∈ R× R+ (4.1)
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We would like to study the equation (4.1) by considering the travelling wave solutions. We
detect the oscillatory component for the travelling waves by using the ansatz

u(y,t) = h(w), w = y − λt, λ ∈ R. (4.2)

Here, λ 6= 0 is the travelling wave speed and this implies that u(w) = h(w) is just a stationary
solution of (4.1).

Suppose that at w = 0, h(w) has the interface with the trivial extension h ≡ 0 for w < 0. For
w > 0, we can exhibit ”the maximal regularity” for this PDE, and by substituting in (4.1), we
get

− λh′ = −h(4) + (h′′)2 − sign(h), w > 0, h(0) = 0. (4.3)

Remark 26. To exhibit the ”maximal regularity”, the expression is like

u(y,t) ∼ (y − s(t))4φ(ln(y − s(t))), as y −→ s+(t).

s(t) is the interface. The strong absorption term is involved in the oscillatory behavior. The
leading change sign asymptotic are governed by the terms h(4) and sign(h) in (4.3).

By neglecting the non-stationary, λ−dependent term for small h implies that λh′ = 0 and
h′′ = 0, so we keep two leading terms and get

h(4) + sign(h) = 0. (4.4)

Set h(w) = w4φ(s), where s = ln(w). We call φ(s) the oscillatory component for h. By
plugging it in (4.4), we obtain

h
′
(w) = 4w3φ(ln(w)) + w3φ

′
(ln(w)),

h
′′
(w) = 12w2φ(ln(w)) + 7w2φ

′
(ln(w)) + w2φ

′′
(ln(w)),

h
′′′

(w) = 24wφ(ln(w)) + 26wφ
′
(ln(w)) + 9wφ

′′
(ln(w)) + wφ

′′′
(ln(w)),

h(4)(w) = 24φ(ln(w)) + 50φ
′
(ln(w)) + 35φ

′′
(ln(w)) + 10φ

′′′
(ln(w)) + φ(4)(ln(w)).

Hence, φ satisfies the autonomous fourth-order ODE

φ(4) + 10φ(3) + 35φ(2) + 50φ′ + 24φ+ sign(φ) = 0, sign(φ) =

+1, φ ≥ 0,

−1, φ < 0
(4.5)

Conjecture 4.1 (Galaktionov-Svirshchevskii [6]). The ODE (4.5) has a unique nontrivial
periodic solution φ(s) which is asymptotically stable as s −→ +∞.
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The rest of the present work is dedicated to demonstrate one part of the Galaktionov-
Svirshchevskii’s conjecture, that is that ODE (4.5) has a locally unique nontrivial periodic
solution. To demonstrate this, we recast the problem of looking for a periodic solution of (4.5)
as a problem of the form f(x) = 0 posed on a finite dimensional Banach space. Setting up the
problem f(x) = 0 requires some basic notions of ODEs, as introduced in Chapter 2. Then,
we combine the theory of the radii polynomial approach as introduced in Chapter 3 together
with the theory of interval arithmetic as introduced in Chapter 1, to prove the result.

4.2 Set-up of the problem f(x) = 0

Consider a time rescaling factor L > 0, and let

Ψ(t) := φ(tL).

Hence, we can see that if φ is a solution of (4.5), then −φ is also a solution. We use this
symmetry to set-up the problem. Let

φ1 := φ

φ2 := φ′

φ3 := φ′′

φ4 := φ(3).

This implies that
φ′1
φ′2
φ′3
φ′4

 =


φ2

φ3

φ4

−10φ4 − 35φ3 − 50φ2 − 24φ1

+


0

0

0

−sign(φ1)



=


0 1 0 0

0 0 1 0

0 0 0 1

−24 −50 −35 −10



φ1

φ2

φ3

φ4

+


0

0

0

−sign(φ1)

 = Aφ+


0

0

0

−sign(φ1)


︸ ︷︷ ︸

b

,

where

φ :=


φ1

φ2

φ3

φ4

 , A :=


0 1 0 0

0 0 1 0

0 0 0 1

−24 −50 −35 −10

 and b =


0

0

0

−sign(φ1)

 .

We obtain that solving (4.5) is equivalent to solveφ′ = g1(φ) := Aφ+ b, φ ≥ 0,

φ′ = g2(φ) := Aφ− b, φ < 0.

43



Before continuing our discussions, let us introduce a lemma which help us to solve the problem
in the positive domain and deduce the solution in the negative domain.

Lemma 4.2. Let φ : [0,L] −→ R4, φ′(t) = Aφ(t) + b with φ(0) = φ0 = −φ(L). Then
ϕ(t) := −φ(t) satisfies ϕ′(t) = Aϕ(t)− b and ϕ(0) = −ϕ(L).

Proof 4.3. We know from the general theory of ordinary differential equations, as introduced
in Chapter 2, that the general solution of φ(t) is given by

φ(t) = eAtφ0 +

∫ t

0
eA(t−s)b(ds,

−ϕ(t) = −eA(t)ϕ(0) +

∫ t

0
e(t−s)bds,

ϕ(t) = eA(t)ϕ0 −
∫ t

0
e(t−s)bds.

This implies that ϕ′(t) = Aϕ(t)− b and ϕ(0) = −φ(0) = φ(L) = −ϕ(L).

By the previous lemma, it is sufficient to consider the problem in the upper domain t ∈ [0,L].

Let x = (L, a1,a2,a3) ∈ R4, where L is the period and φ0 = (0,a1,a2,a3), and consider the
nonlinear modelf : R4 −→ R4,

x −→ f(x) = φ0 + φ(L), where x = (L,a1,a2,a3) solution on the positive domain.

More explicitly,

f(x) :=


0

a1

a2

a3

+ eAL


0

a1

a2

a3

+

∫ L

0
eA(L−s)b(s)ds. (4.6)

The problem f(x) = 0 implies that φ0 + φ(L) = 0. So we get,

φ0 + eALφ0 +

∫ L

0
e(A−L)bds = 0,

where A =


0 1 0 0

0 0 1 0

0 0 0 1

−24 −50 −35 −10

 and b =


0

0

0

−1

 .

It is a non homogeneous linear systems, so we turn on chapter two to solve this equation.
The eigenvalues and associated eigenvectors are

λ1 = −4, λ2 = −1, λ3 = −2 and λ4 = −3,
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with associated eigenvectors

v1 =


−1/64

1/10

−1/4

1

 , v2 =


−1

1

−1

1

 , v3 =


−1/8

1/4

−1/2

1

 and v4 =


−1/27

1/9

−1/3

1

 .

Let

P =


−1/64 −1 −1/8 −1/27

1/10 1 1/4 1/9

−1/4 −1 −1/2 −1/3

1 1 1 1

 .

The fundamental matrix solution Φ(t) = eAt, with Φ(0) = I is given by

eAt = P−1diag(eλ1t,eλ2t,eλ3t,eλ4t)P

=


64 352/3 64 32/3

−4 −13/3 −3/2 −1/6

4/8 76 32 4

−108 −189 −189/2 −27/2



e−4t 0 0 0

0 e−t 0 0

0 0 e−2t 0

0 0 0 e−3t



−1/64 −1 −1/8 −1/27

1/10 1 1/4 1/9

−1/4 −1 −1/2 −1/3

1 1 1 1

 .

We now use Newton’s method to obtain an approximation of the solution

x̄ =


1.4183

0.0225

0.0084

−0.0488

 .

The graph of the periodic orbit can be found in Figure 4.2.

4.3 The radii polynomial approach for
Galaktionov-Svirshchevskii’s conjecture

Let us consider the problem f(x) = 0 as given by (4.6). To use the radii polynomial approach as
introduced in Chapter 3, we start to compute the bound Y ∈ R4 such that |Df−1(x̄)f(x̄)| ≤ Y.
For the bounds Zi, let us consider h : [0,1] −→ R4 by h(s) = Dxf(x̄+ sb)c. We have

h(1)− h(0) = Dxf(x̄+ b)c−Dxf(x̄).
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For all k ∈ {1,....,4}, there exists sk ∈ [0,1] such that

(Dxfk(x̄+ b)−Dxfk(x̄))c = hk(1)− hk(0) = h′k(sk) = D2
xfk(x̄+ skb)(b,c).

Let b̃ and c̃ in B1(0) such that b = b̃r and c = c̃r. It implies

(Dxfk(x̄+ b)−Dxfk(x̄))c ≤ D2
xfk(x̄+ skb)(b̃,c̃)r

2.

Let r∗ = 10−4 an a-priori upper bound for the left point of the existence interval of the radii
polynomials. We will have to show a-posteriori that r < r∗. Denote by b∗ = [−r∗,r∗]4 a vector
in R4 with entries given by the interval [−r∗,r∗].

Let x∗ = x̄ + b∗ ∈ R4, with its k − th entry given by the interval [x̄k − r∗, x̄k + r∗]. De-
note by δ = [−1,1]4 a vector in R4, whose entries are given by the interval [−1,1], then for
each b, r in Br(0), we get

Df−1(x̄)|(Dxf(x̄+ b)−Dxf(x̄))c| ≤ |AD2
xf(X̄)(δ,δ)r2|.

Using interval arithmetic, compute Z(2) ∈ R5, such that

|Df−1(x̄)D2
xf(X̄)(δ,δ)r2| ≤ Z(2).

Using the previous bounds, define the radii polynomials

pk(r) = Z
(2)
k r2 − r + Yk, k = 1,...,4.

4.4 Validated numerics of Galaktionov-Svirshchevskii’s
conjecture

We now used the Z and Y bounds of Section 4.3 to compute the the radii polynomials defined
by

pk(r) = Z
(2)
k r2 − r + Yk, k = 1,...,4,

hence, we obtained the following result
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Figure 4.1: radii polynomials generated with φ.

The first column represent the vector (Z
(2)
i )4

i=1, the second vector (−1)4
i=1 and the third

(Yi)
4
i=1.

Theorem 4.4. For every r ∈ I = [4.9923e−15,1.0001e−4], there exists a unique x̂ ∈ Bx̄(r)

such that f(x̂) = 0, with f given in (4.6). That corresponds to a periodic orbit of the
Galaktionov-Svirshchevskii’s conjecture with period L = 1.4183.

Proof 4.5. The follows from an application of Proposition (3.6) of Chapter 3.

Figure 4.2: graph of the period solution for Galaktionov-Svirshchevskii’s conjecture.

After defining F_conj(x) and DF_conj(x), we use Newton’s method to find x̄, which is
an approximation of the exact solution x̃. We now define the operator T (x) := x − Af(x),

where A = Df(x̄)−1. Then we can define the radii polynomial pi(r), r = 1,2, by the function
conj_Radii(x, r_star). We use this function to compute I = {r > 0, pi(r) < 0} 6= ∅. The
codes associated to this work can be found in annexe.
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Conclusion

Judicious use of interval arithmetic, combined with careful pen and paper estimates, leads to
effective strategies for computer assisted analysis of nonlinear operator equations. In this work,
we provide a rigorous computational method for finding the periodic solution as conjectured
by Galaktionov and Svirshchevskii in its conjecture, which was an open problem prior to the
present work. By the Radii polynomial approach and interval arithmetic, we can provide a
strategy for obtaining bounds about the approximate solution on which the corresponding
Newton-like operator is a contraction mapping. Note that in this work, we did not prove the
stability for the solution of the Galaktionov-Svirshchevskii’s conjecture which required other
concepts in dynamical systems.

This method has been introduced to study solutions of ordinary, partial, and delay differential
equations, such has periodic orbits, equilibria and solutions of initial value problems (IVPs). It
is a powerful technique in mathematics but for infinite dimensional Banach spaces, an explicit
representation of the inverse of the derivative is not possible. In this case, other tools will be
used.
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Appendix A

numerical codes

Codes associated to the FitzHugh-Nagumo equation

f unc t i on [ y ] = int_myfunction ( ix , i g )

% a , eps and g are parameters .
a = i n t v a l (5 ) ;
eps = i n t v a l (1 ) ;

y=[ ix (1 ) ∗( ix (1 )−a ) ∗(1− i x (1 ) )−i x (2 ) ; eps ∗( ix (1 )−i g ∗ ix (2 ) ) ] ;

end

% This func t i on computes de Jacobian matrix f o r FitzHugh−Nagumo
equat ion .

func t i on [ dy ] = int_funct ion_df ( ix , i g )

% ix i s the i n i t i a l guess o f the root
% ig i s a parameter in the Lorenz equat ion
a = i n t v a l (5 ) ;
eps = i n t v a l (1 ) ;
%The Jacobian matrix
dy (1 , 1 ) = −3∗ ix (1 ) ^2 + ix (1 ) ∗(2+2∗a )−a ;
dy (1 , 2 ) = i n t v a l (−1) ;
dy (2 , 1 ) = eps ;
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dy (2 , 2 )=−eps ∗ i g ;

end

func t i on I = int_Radi i ( x0 , g )
% x i s the i n i t i a l po int and g i s a parameter ;
i g=i n t v a l ( g ) ;
%x0=in t v a l ( newton (x , 20 , g ) ) ;
x11=x0 ( 1 , : ) ;
int_f=int_myfunction ( x0 , i g ) ;
A=inv ( int_funct ion_df ( x0 , i g ) ) ;
A=i n t v a l (A) ;
Y=abs (A∗ int_f ) ;
num2str (mid (Y) ) ;
f p r i n t f ( ’ \n ’ ) ;
eps=abs ( i n t v a l ( eye (2 ) )−A∗( int_funct ion_df ( x0 , i g ) ) ) ;
Z1=eps ∗( i n t v a l ( [ 1 ; 1 ] ) ) ;
Z2=abs (A) ∗( i n t v a l ( [ 6 ∗ x11 ; 1 2 ] ) ) ;
Z3=abs (A) ∗( i n t v a l ( [ 3 ; 0 ] ) ) ;
p_int=[Z3 , Z2 , Z1−i n t v a l ( [ 1 ; 1 ] ) ,Y ] ;
p=sup ( p_int ) ;
num2str (p)
f p r i n t f ( ’ \n ’ ) ;
f p r i n t f ( ’The roo t s are \n\n ’ )
f o r i =1:2

roo t s (p( i , : ) )
end
f o r i =1:2

a ( i , : ) = so r t ( r oo t s (p( i , : ) ) ) ;
end
i f norm( imag ( a ) )== 0

f o r i =1:2
I1= in f sup ( a (1 , 2 ) , a (1 , 3 ) ) ;
I2= in f sup ( a (2 , 2 ) , a (2 , 3 ) ) ;
I=i n t e r s e c t ( I1 , I2 ) ;
radii_min=i n f ( I ) ∗ 1 . 1 ;

% evaluate_p_at_rad_min = radii_min^3∗p ( : , 1 )+radii_min^2∗p
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( : , 2 )+ radii_min∗p ( : , 3 )+p ( : , 4 ) ;
end

e l s e
I=in f sup (−1,−1) ;

% evaluate_p_at_rad_min = 1 ;
end

% i f max( sup ( evaluate_p_at_rad_min ) )<=0
%
% f p r i n t f ( ’ \ n\n ’ ) ;
% d i sp l ay ( [ ’ Success ! The rad iu s i s = ’ , num2str ( radii_min ) ] )
% f p r i n t f ( ’ \ n\n\n ’ )
% e l s e
% d i sp l ay ( ’No rad iu s ’ )
% end

end
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Codes associated to the Galaktionov-Svirshchevskii’s conjecture

f unc t i on [F ] = F_conj ( x )

x i s the vec to r in R^4 , L i s the per iod and Phi0 the i n i t i a l
c ond i t i on .

% x = [L ; a ] ; a = ( a1 , a2 , a3 ) ; phi0 = (0 , a1 , a2 , a3 ) ;
L=x (1) ;
a=x ( 2 : 4 ) ;

%%%%%%%%%%%%%%%%%%%
%%% De f i n i t i o n o f F %%%
%%%%%%%%%%%%%%%%%%%

Homogeneous part o f F .

t_hom1= (−(11/6)∗exp(−4∗L)+7∗exp(−3∗L) −(19/2)∗exp(−2∗L)+(13/3)∗exp
(−L) ) ∗a (1 )+(−exp(−4∗L)+(7/2)∗exp(−3∗L)−4∗exp(−2∗L)+(3/2)∗exp(−L)
) ∗a (2 ) +(−(1/6)∗exp(−4∗L)+(1/2)∗exp(−3∗L) −(1/2)∗exp(−2∗L)+(1/6)∗
exp(−L) ) ∗a (3 ) ;

t_hom2=((22/3) ∗exp(−4∗L)−21∗exp(−3∗L)+19∗exp(−2∗L) −(13/3)∗exp(−L) ) ∗
a (1 )+(4∗exp(−4∗L) −(21/2)∗exp(−3∗L)+8∗exp(−2∗L) −(3/2)∗exp(−L) ) ∗a
(2 ) +((2/3) ∗exp(−4∗L) −(3/2)∗exp(−3∗L)+exp(−2∗L) −(1/6)∗exp(−L) ) ∗a
(3 ) ;

t_hom3=(−(88/3)∗exp(−4∗L)+63∗exp(−3∗L)−38∗exp(−2∗L)+(13/3)∗exp(−L) )
∗a (1 )+(−16∗exp(−4∗L)+(63/2)∗exp(−3∗L)−16∗exp(−2∗L)+(3/2)∗exp(−L)
) ∗a (2 ) +(−(8/3)∗exp(−4∗L)+(9/2)∗exp(−3∗L)−2∗exp(−2∗L)+(1/6)∗exp(−
L) ) ∗a (3 ) ;

t_hom4=((352/3) ∗exp(−4∗L)−189∗exp(−3∗L)+76∗exp(−2∗L) −(13/3)∗exp(−L)
) ∗a (1 ) +(64∗exp(−4∗L) −(189/2)∗exp(−3∗L)+32∗exp(−2∗L) −(3/2)∗exp(−L
) ) ∗a (2 ) +((32/3) ∗exp(−4∗L) −(27/2)∗exp(−3∗L)+4∗exp(−2∗L) −(1/6)∗exp
(−L) ) ∗a (3 ) ;

t_hom=[t_hom1 ; t_hom2 ; t_hom3 ; t_hom4 ] ;

Inhomogeneous part o f F .
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t_inhom1= −(1/24)∗exp(−4∗L)+(1/6)∗exp(−3∗L) −(1/4)∗exp(−2∗L)+(1/6)∗
exp(−L) −1/24;

t_inhom2= (1/6) ∗exp(−4∗L) −(1/2)∗exp(−3∗L)+(1/2)∗exp(−2∗L) −(1/6)∗
exp(−L) ;

t_inhom3= −(2/3)∗exp(−4∗L)+(3/2)∗exp(−3∗L)−exp(−2∗L)+(1/6)∗exp(−L) ;
t_inhom4= (8/3) ∗exp(−4∗L) −(9/2)∗exp(−3∗L)+2∗exp(−2∗L) −(1/6)∗exp(−L)

;

t_inhom=[t_inhom1 ; t_inhom2 ; t_inhom3 ; t_inhom4 ] ;

F= t_hom + t_inhom +[0; a ] ;

end

func t i on [DF] = DF_conj ( x )

%%%%% x = [L ; a ] ; a = ( a (1 ) , a (2 ) , a (3 ) ) ; Phi0 = (0 , a (1 ) , a (2 ) , a (3 ) ) ;

L=x (1) ;
a=x ( 2 : 4 ) ;
DF=ze ro s (4 ) ;

We g ive the d e f i n i t i o n f o r each component o f DF.

DF(1 , 1 )= ((22/3) ∗exp(−4∗L)−21∗exp(−3∗L)+19∗exp(−2∗L) −(13/3)∗exp(−L)
) ∗a (1 )+(4∗exp(−4∗L) −(21/2)∗exp(−3∗L)+8∗exp(−2∗L) −(3/2)∗exp(−L) ) ∗
a (2 ) +((2/3) ∗exp(−4∗L) −(3/2)∗exp(−3∗L)+exp(−2∗L) −(1/6)∗exp(−L) ) ∗a
(3 ) +(1/6)∗exp(−4∗L) −(1/2)∗exp(−3∗L)+(1/2)∗exp(−2∗L) −(1/6)∗exp(−L
) ;

DF(1 , 2 ) =−(11/6)∗exp(−4∗L)+7∗exp(−3∗L) −(19/2)∗exp(−2∗L)+(13/3)∗exp(−
L) ;

DF(1 , 3 )=−exp(−4∗L)+(7/2)∗exp(−3∗L)−4∗exp(−2∗L)+(3/2)∗exp(−L) ;
DF(1 , 4 )=−(1/6)∗exp(−4∗L)+(1/2)∗exp(−3∗L) −(1/2)∗exp(−2∗L)+(1/6)∗exp

(−L) ;

DF(2 , 1 )= (−(88/3)∗exp(−4∗L)+63∗exp(−3∗L)−38∗exp(−2∗L)+(13/3)∗exp(−L
) ) ∗a (1 )+(−16∗exp(−4∗L)+(63/2)∗exp(−3∗L)−16∗exp(−2∗L)+(3/2)∗exp(−
L) ) ∗a (2 ) +(−(8/3)∗exp(−4∗L)+(9/2)∗exp(−3∗L)−2∗exp(−2∗L)+(1/6)∗exp
(−L) ) ∗a (3 ) −(2/3)∗exp(−4∗L)+(3/2)∗exp(−3∗L)−exp(−2∗L)+(1/6)∗exp(−
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L) ;
DF(2 , 2 ) =(22/3)∗exp(−4∗L)−21∗exp(−3∗L)+19∗exp(−2∗L) −(13/3)∗exp(−L)

+1;
DF(2 , 3 )=4∗exp(−4∗L) −(21/2)∗exp(−3∗L)+8∗exp(−2∗L) −(3/2)∗exp(−L) ;
DF(2 , 4 ) =(2/3)∗exp(−4∗L) −(3/2)∗exp(−3∗L)+exp(−2∗L) −(1/6)∗exp(−L) ;

DF(3 , 1 )= ((352/3) ∗exp(−4∗L)−189∗exp(−3∗L)+76∗exp(−2∗L) −(13/3)∗exp(−
L) ) ∗a (1 ) +(64∗exp(−4∗L) −(189/2)∗exp(−3∗L)+32∗exp(−2∗L) −(3/2)∗exp
(−L) ) ∗a (2 ) +((32/3) ∗exp(−4∗L) −(27/2)∗exp(−3∗L)+4∗exp(−2∗L) −(1/6)∗
exp(−L) ) ∗a (3 ) +(8/3)∗exp(−4∗L) −(9/2)∗exp(−3∗L)+2∗exp(−2∗L) −(1/6)∗
exp(−L) ;

DF(3 , 2 ) =−(88/3)∗exp(−4∗L)+63∗exp(−3∗L)−38∗exp(−2∗L)+(13/3)∗exp(−L) ;
DF(3 , 3 )=−16∗exp(−4∗L)+(63/2)∗exp(−3∗L)−16∗exp(−2∗L)+(3/2)∗exp(−L)

+1;
DF(3 , 4 )=−(8/3)∗exp(−4∗L)+(9/2)∗exp(−3∗L)−2∗exp(−2∗L)+(1/6)∗exp(−L) ;

DF(4 , 1 )= (−(1408/3)∗exp(−4∗L)+567∗exp(−3∗L)−152∗exp(−2∗L)+(13/3)∗
exp(−L) ) ∗a (1 )+(−256∗exp(−4∗L) +(567/2)∗exp(−3∗L)−64∗exp(−2∗L)
+(3/2)∗exp(−L) ) ∗a (2 ) +(−(128/3)∗exp(−4∗L)+(81/2)∗exp(−3∗L)−8∗exp
(−2∗L)+(1/6)∗exp(−L) ) ∗a (3 ) −(32/3)∗exp(−4∗L)+(27/2)∗exp(−3∗L)−4∗
exp(−2∗L)+(1/6)∗exp(−L) ;

DF(4 , 2 ) =(352/3)∗exp(−4∗L)−189∗exp(−3∗L)+76∗exp(−2∗L) −(13/3)∗exp(−L)
;

DF(4 , 3 )=64∗exp(−4∗L) −(189/2)∗exp(−3∗L)+32∗exp(−2∗L) −(3/2)∗exp(−L) ;
DF(4 , 4 ) =(32/3)∗exp(−4∗L) −(27/2)∗exp(−3∗L)+4∗exp(−2∗L) −(1/6)∗exp(−L)

+1;

end

func t i on [ I , s u c c e s s ] = conj_Radii (x , r_star )

% x = [L ; a ] ; a = ( a (1 ) , a (2 ) , a (3 ) ) ; phi0 = (0 , a (1 ) , a (2 ) , a (3 ) ) ;

x=i n t v a l ( x ) ;
L=x (1) ;
a=x ( 2 : 4 ) ;
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Because the rad iu s o f i n t v a l (2/3) , i n t v a l (1/6) , e t c . . . are
d i f f e r e n t to zero , we r ep l a c e

i n t v a l (2/3) , i n t v a l (1/6) , e t c . . . by i n t v a l (2 ) / i n t v a l (3 ) , i n t v a l (1 ) /
i n t v a l (6 ) , e t c . . . .

i 1=i n t v a l (1 ) ;
i 2=i n t v a l (2 ) ;
i 3=i n t v a l (3 ) ;
i 6=i n t v a l (6 ) ;
i 8=i n t v a l (8 ) ;
i 11=i n t v a l (11) ;
i 13=i n t v a l (13) ;
i 22=i n t v a l (22) ;
i 24=i n t v a l (24) ;
i 32=i n t v a l (32) ;
i 88=i n t v a l (88) ;
i 128=i n t v a l (128) ;
i 352=i n t v a l (352) ;
i 512=i n t v a l (512) ;
i1408=i n t v a l (1408) ;
i5632=i n t v a l (5632) ;

%%%%%%%%%%%%%%%%%%%
%%% De f i n i t i o n o f F %%%
%%%%%%%%%%%%%%%%%%%

We de f i n e each component o f the homogeneous part o f F .

t_hom1= (−( i 11 / i 6 ) ∗exp(−4∗L)+7∗exp(−3∗L) −(19/2)∗exp(−2∗L)+( i13 / i 3 ) ∗
exp(−L) ) ∗a (1 )+(−exp(−4∗L)+(7/2)∗exp(−3∗L)−4∗exp(−2∗L)+(3/2)∗exp
(−L) ) ∗a (2 )+(−( i 1 / i 6 ) ∗exp(−4∗L)+(1/2)∗exp(−3∗L) −(1/2)∗exp(−2∗L)+(
i 1 / i 6 ) ∗exp(−L) ) ∗a (3 ) ;

t_hom2=(( i 22 / i 3 ) ∗exp(−4∗L)−21∗exp(−3∗L)+19∗exp(−2∗L)−( i 13 / i 3 ) ∗exp(−
L) ) ∗a (1 )+(4∗exp(−4∗L) −(21/2)∗exp(−3∗L)+8∗exp(−2∗L) −(3/2)∗exp(−L)
) ∗a (2 ) +(( i 2 / i 3 ) ∗exp(−4∗L) −(3/2)∗exp(−3∗L)+exp(−2∗L)−( i 1 / i 6 ) ∗exp
(−L) ) ∗a (3 ) ;

t_hom3=(−( i 88 / i 3 ) ∗exp(−4∗L)+63∗exp(−3∗L)−38∗exp(−2∗L)+( i13 / i 3 ) ∗exp
(−L) ) ∗a (1 )+(−16∗exp(−4∗L)+(63/2)∗exp(−3∗L)−16∗exp(−2∗L)+(3/2)∗
exp(−L) ) ∗a (2 )+(−( i 8 / i 3 ) ∗exp(−4∗L)+(9/2)∗exp(−3∗L)−2∗exp(−2∗L)+(
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i 1 / i 6 ) ∗exp(−L) ) ∗a (3 ) ;
t_hom4=(( i352 / i 3 ) ∗exp(−4∗L)−189∗exp(−3∗L)+76∗exp(−2∗L)−( i 13 / i 3 ) ∗exp

(−L) ) ∗a (1 ) +(64∗exp(−4∗L) −(189/2)∗exp(−3∗L)+32∗exp(−2∗L) −(3/2)∗
exp(−L) ) ∗a (2 ) +(( i 32 / i 3 ) ∗exp(−4∗L) −(27/2)∗exp(−3∗L)+4∗exp(−2∗L)−(
i 1 / i 6 ) ∗exp(−L) ) ∗a (3 ) ;

t_hom=[t_hom1 ; t_hom2 ; t_hom3 ; t_hom4 ] ;

Inhomogeneous part o f F .

t_inhom1= −( i 1 / i 24 ) ∗exp(−4∗L)+( i 1 / i 6 ) ∗exp(−3∗L) −(1/4)∗exp(−2∗L)+(
i 1 / i 6 ) ∗exp(−L)−i 1 / i 24 ;

t_inhom2= ( i 1 / i 6 ) ∗exp(−4∗L) −(1/2)∗exp(−3∗L)+(1/2)∗exp(−2∗L)−( i 1 / i 6
) ∗exp(−L) ;

t_inhom3= −( i 2 / i 3 ) ∗exp(−4∗L)+(3/2)∗exp(−3∗L)−exp(−2∗L)+( i 1 / i 6 ) ∗exp
(−L) ;

t_inhom4= ( i 8 / i 3 ) ∗exp(−4∗L) −(9/2)∗exp(−3∗L)+2∗exp(−2∗L)−( i 1 / i 6 ) ∗exp
(−L) ;

t_inhom=[t_inhom1 ; t_inhom2 ; t_inhom3 ; t_inhom4 ] ;

F= t_hom + t_inhom +[0; a ] ;

%%%%%%%%%%%%%%%%%%%
%%% De f i n i t i o n o f invDF %%%
%%%%%%%%%%%%%%%%%%%

We de f i n e the i nv e r s e o f DF.

DF11= ( ( i22 / i 3 ) ∗exp(−4∗L)−21∗exp(−3∗L)+19∗exp(−2∗L)−( i 13 / i 3 ) ∗exp(−L
) ) ∗a (1 )+(4∗exp(−4∗L) −(21/2)∗exp(−3∗L)+8∗exp(−2∗L) −(3/2)∗exp(−L) )
∗a (2 ) +(( i 2 / i 3 ) ∗exp(−4∗L) −(3/2)∗exp(−3∗L)+exp(−2∗L)−( i 1 / i 6 ) ∗exp(−
L) ) ∗a (3 )+( i 1 / i 6 ) ∗exp(−4∗L) −(1/2)∗exp(−3∗L)+(1/2)∗exp(−2∗L)−( i 1 /
i 6 ) ∗exp(−L) ;

DF12=−( i 11 / i 6 ) ∗exp(−4∗L)+7∗exp(−3∗L) −(19/2)∗exp(−2∗L)+( i13 / i 3 ) ∗exp
(−L) ;

DF13=−exp(−4∗L)+(7/2)∗exp(−3∗L)−4∗exp(−2∗L)+(3/2)∗exp(−L) ;
DF14=−( i 1 / i 6 ) ∗exp(−4∗L)+(1/2)∗exp(−3∗L) −(1/2)∗exp(−2∗L)+( i 1 / i 6 ) ∗exp

(−L) ;
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DF21= (−( i 88 / i 3 ) ∗exp(−4∗L)+63∗exp(−3∗L)−38∗exp(−2∗L)+( i13 / i 3 ) ∗exp(−
L) ) ∗a (1 )+(−16∗exp(−4∗L)+(63/2)∗exp(−3∗L)−16∗exp(−2∗L)+(3/2)∗exp
(−L) ) ∗a (2 )+(−( i 8 / i 3 ) ∗exp(−4∗L)+(9/2)∗exp(−3∗L)−2∗exp(−2∗L)+( i 1 /
i 6 ) ∗exp(−L) ) ∗a (3 )−( i 2 / i 3 ) ∗exp(−4∗L)+(3/2)∗exp(−3∗L)−exp(−2∗L)+(
i 1 / i 6 ) ∗exp(−L) ;

DF22=( i22 / i 3 ) ∗exp(−4∗L)−21∗exp(−3∗L)+19∗exp(−2∗L)−( i 13 / i 3 ) ∗exp(−L)
+1;

DF23=4∗exp(−4∗L) −(21/2)∗exp(−3∗L)+8∗exp(−2∗L) −(3/2)∗exp(−L) ;
DF24=( i 2 / i 3 ) ∗exp(−4∗L) −(3/2)∗exp(−3∗L)+exp(−2∗L)−( i 1 / i 6 ) ∗exp(−L) ;

DF31= ( ( i352 / i 3 ) ∗exp(−4∗L)−189∗exp(−3∗L)+76∗exp(−2∗L)−( i 13 / i 3 ) ∗exp
(−L) ) ∗a (1 ) +(64∗exp(−4∗L) −(189/2)∗exp(−3∗L)+32∗exp(−2∗L) −(3/2)∗
exp(−L) ) ∗a (2 ) +(( i 32 / i 3 ) ∗exp(−4∗L) −(27/2)∗exp(−3∗L)+4∗exp(−2∗L)−(
i 1 / i 6 ) ∗exp(−L) ) ∗a (3 )+( i 8 / i 3 ) ∗exp(−4∗L) −(9/2)∗exp(−3∗L)+2∗exp(−2∗
L)−( i 1 / i 6 ) ∗exp(−L) ;

DF32=−( i 88 / i 3 ) ∗exp(−4∗L)+63∗exp(−3∗L)−38∗exp(−2∗L)+( i13 / i 3 ) ∗exp(−L)
;

DF33=−16∗exp(−4∗L)+(63/2)∗exp(−3∗L)−16∗exp(−2∗L)+(3/2)∗exp(−L)+1;
DF34=−( i 8 / i 3 ) ∗exp(−4∗L)+(9/2)∗exp(−3∗L)−2∗exp(−2∗L)+( i 1 / i 6 ) ∗exp(−L)

;

DF41= (−( i1408 / i 3 ) ∗exp(−4∗L)+567∗exp(−3∗L)−152∗exp(−2∗L)+( i13 / i 3 ) ∗
exp(−L) ) ∗a (1 )+(−256∗exp(−4∗L) +(567/2)∗exp(−3∗L)−64∗exp(−2∗L)
+(3/2)∗exp(−L) ) ∗a (2 )+(−( i128 / i 3 ) ∗exp(−4∗L)+(81/2)∗exp(−3∗L)−8∗
exp(−2∗L)+( i 1 / i 6 ) ∗exp(−L) ) ∗a (3 )−( i 32 / i 3 ) ∗exp(−4∗L)+(27/2)∗exp
(−3∗L)−4∗exp(−2∗L)+( i 1 / i 6 ) ∗exp(−L) ;

DF42=( i352 / i 3 ) ∗exp(−4∗L)−189∗exp(−3∗L)+76∗exp(−2∗L)−( i 13 / i 3 ) ∗exp(−L
) ;

DF43=64∗exp(−4∗L) −(189/2)∗exp(−3∗L)+32∗exp(−2∗L) −(3/2)∗exp(−L) ;
DF44=( i32 / i 3 ) ∗exp(−4∗L) −(27/2)∗exp(−3∗L)+4∗exp(−2∗L)−( i 1 / i 6 ) ∗exp(−L

)+1;

invDF = inv ( [ DF11 DF12 DF13 DF14 ; DF21 DF22 DF23 DF24 ; DF31 DF32
DF33 DF34 ; DF41 DF42 DF43 DF44 ] ) ;

%%%%%%%%%%%%%%%%% De f i n i t i o n o f Y

A = invDF ;
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Y=abs (A∗F) ; We de f i n e the bound Y.

%%%%%%%%%%%%%%%% De f i n i t i o n Z2( r )

L=mid (L) ;
a=mid ( a ) ;
X_ast = [ in f sup (L−r_star , L+r_star ) ;

i n f sup ( a (1 )−r_star , a (1 )+r_star ) ;
i n f sup ( a (2 )−r_star , a (2 )+r_star ) ;
i n f sup ( a (3 )−r_star , a (3 )+r_star ) ] ;

d e l t a =[ in f sup (−1 ,1) ; i n f sup (−1 ,1) ; i n f sup (−1 ,1) ; i n f sup (−1 ,1) ] ;

We de f i n e D^2(F) , which we w i l l used in Z^{2}( r ) . See page 36 .

DDF1 = ( i 1 / i 6 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )−de l t a (1 ) ∗ de l t a (1 ) ∗
exp(−2∗X_ast (1 ) )+4∗de l t a (3 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )−( i 2 / i 3 ) ∗
de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) +(3/2)∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp
(−3∗X_ast (1 ) )+( i 2 / i 3 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) −(3/2)∗
de l t a (4 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+de l t a (4 ) ∗ de l t a (1 ) ∗exp(−2∗
X_ast (1 ) )+( i 2 / i 3 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) −(3/2)∗ de l t a
(4 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+( i13 / i 3 ) ∗X_ast (2 ) ∗ de l t a (1 ) ∗ de l t a
(1 ) ∗exp(−X_ast (1 ) ) +(3/2)∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−X_ast
(1 ) )+( i 1 / i 6 ) ∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )−( i 13 / i 3 ) ∗
de l t a (2 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )−( i 13 / i 3 ) ∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp
(−X_ast (1 ) ) −(3/2)∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) ) −(3/2)∗ de l t a
(3 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )−( i 1 / i 6 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−X_ast
(1 ) )−( i 1 / i 6 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )+de l t a (4 ) ∗ de l t a (1 ) ∗
exp(−2∗X_ast (1 ) )+8∗de l t a (3 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )−( i 88 / i 3 ) ∗
X_ast (2 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )+63∗X_ast (2 ) ∗ de l t a (1 )
∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−38∗X_ast (2 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−2∗
X_ast (1 ) )−16∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) +(63/2)∗
X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−16∗X_ast (3 ) ∗ de l t a (1 )
∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )−( i 8 / i 3 ) ∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗
exp(−4∗X_ast (1 ) ) +(9/2)∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast
(1 ) )−2∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )+( i22 / i 3 ) ∗
de l t a (2 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )−21∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−3∗
X_ast (1 ) )+19∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )+( i22 / i 3 ) ∗ de l t a
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(2 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )−21∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast
(1 ) )+19∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) ) −(21/2)∗ de l t a (3 ) ∗ de l t a
(1 ) ∗exp(−3∗X_ast (1 ) )+4∗de l t a (3 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) −(21/2)
∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+8∗de l t a (3 ) ∗ de l t a (1 ) ∗exp(−2∗
X_ast (1 ) ) ;

DDF2 = −( i 1 / i 6 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )+2∗de l t a (1 ) ∗ de l t a
(1 ) ∗exp(−2∗X_ast (1 ) )−16∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )+( i 8 /
i 3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) −(9/2)∗ de l t a (1 ) ∗ de l t a (1 ) ∗
exp(−3∗X_ast (1 ) )−( i 8 / i 3 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )
+(9/2)∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−2∗de l t a (4 ) ∗ de l t a (1 ) ∗
exp(−2∗X_ast (1 ) )−( i 8 / i 3 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )
+(9/2)∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−( i 13 / i 3 ) ∗X_ast (2 ) ∗
de l t a (1 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) ) −(3/2)∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a
(1 ) ∗exp(−X_ast (1 ) )−( i 1 / i 6 ) ∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−X_ast
(1 ) )+( i13 / i 3 ) ∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )+( i13 / i 3 ) ∗ de l t a (2 )
∗ de l t a (1 ) ∗exp(−X_ast (1 ) ) +(3/2)∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )
+(3/2)∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )+( i 1 / i 6 ) ∗ de l t a (4 ) ∗ de l t a
(1 ) ∗exp(−X_ast (1 ) )+( i 1 / i 6 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )−2∗
de l t a (4 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )−16∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−2∗
X_ast (1 ) )+( i352 / i 3 ) ∗X_ast (2 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )
−189∗X_ast (2 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+76∗X_ast (2 ) ∗
de l t a (1 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )+64∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a (1 )
∗exp(−4∗X_ast (1 ) ) −(189/2)∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−3∗
X_ast (1 ) )+32∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )+( i32 / i 3
) ∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) −(27/2)∗X_ast (4 ) ∗
de l t a (1 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+4∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗
exp(−2∗X_ast (1 ) )−( i 88 / i 3 ) ∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )+63∗
de l t a (2 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−38∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−2∗
X_ast (1 ) )−( i 88 / i 3 ) ∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )+63∗ de l t a
(2 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−38∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast
(1 ) ) +(63/2)∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−16∗ de l t a (3 ) ∗ de l t a
(1 ) ∗exp(−4∗X_ast (1 ) ) +(63/2)∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )
−16∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) ) ;

DDF3 = ( i 1 / i 6 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )−4∗de l t a (1 ) ∗ de l t a (1 )
∗exp(−2∗X_ast (1 ) )+64∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )−( i 32 / i 3 )
∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) +(27/2)∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp
(−3∗X_ast (1 ) )+( i32 / i 3 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) −(27/2)
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∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+4∗de l t a (4 ) ∗ de l t a (1 ) ∗exp(−2∗
X_ast (1 ) )+( i32 / i 3 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) −(27/2)∗
de l t a (4 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+( i13 / i 3 ) ∗X_ast (2 ) ∗ de l t a (1 ) ∗
de l t a (1 ) ∗exp(−X_ast (1 ) ) +(3/2)∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−
X_ast (1 ) )+( i 1 / i 6 ) ∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )−( i 13
/ i 3 ) ∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )−( i 13 / i 3 ) ∗ de l t a (2 ) ∗ de l t a (1 )
∗exp(−X_ast (1 ) ) −(3/2)∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) ) −(3/2)∗
de l t a (3 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )−( i 1 / i 6 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−
X_ast (1 ) )−( i 1 / i 6 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )+4∗de l t a (4 ) ∗
de l t a (1 ) ∗exp(−2∗X_ast (1 ) )+32∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )
−( i1408 / i 3 ) ∗X_ast (2 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )+567∗
X_ast (2 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−152∗X_ast (2 ) ∗ de l t a
(1 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )−256∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp
(−4∗X_ast (1 ) ) +(567/2)∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 )
)−64∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )−( i128 / i 3 ) ∗X_ast
(4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) +(81/2)∗X_ast (4 ) ∗ de l t a (1 ) ∗
de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−8∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−2∗
X_ast (1 ) )+( i352 / i 3 ) ∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )−189∗ de l t a
(2 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+76∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast
(1 ) )+( i352 / i 3 ) ∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )−189∗ de l t a (2 ) ∗
de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+76∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )
−(189/2)∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+64∗ de l t a (3 ) ∗ de l t a (1 )
∗exp(−4∗X_ast (1 ) ) −(189/2)∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+32∗
de l t a (3 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) ) ;

DDF4 = −( i 1 / i 6 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )+8∗de l t a (1 ) ∗ de l t a
(1 ) ∗exp(−2∗X_ast (1 ) )−256∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )+(
i128 / i 3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) −(81/2)∗ de l t a (1 ) ∗
de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−( i128 / i 3 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−4∗
X_ast (1 ) ) +(81/2)∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−8∗de l t a (4 ) ∗
de l t a (1 ) ∗exp(−2∗X_ast (1 ) )−( i128 / i 3 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−4∗
X_ast (1 ) ) +(81/2)∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−( i 13 / i 3 ) ∗
X_ast (2 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) ) −(3/2)∗X_ast (3 ) ∗ de l t a
(1 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )−( i 1 / i 6 ) ∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗
exp(−X_ast (1 ) )+( i13 / i 3 ) ∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )+( i13 /3)
∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) ) +(3/2)∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−
X_ast (1 ) ) +(3/2)∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )+( i 1 / i 6 ) ∗ de l t a
(4 ) ∗ de l t a (1 ) ∗exp(−X_ast (1 ) )+( i 1 / i 6 ) ∗ de l t a (4 ) ∗ de l t a (1 ) ∗exp(−X_ast
(1 ) )−8∗de l t a (4 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )−64∗ de l t a (3 ) ∗ de l t a (1 ) ∗
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exp(−2∗X_ast (1 ) )+( i5632 / i 3 ) ∗X_ast (2 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗
X_ast (1 ) )−1701∗X_ast (2 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+304∗
X_ast (2 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )+1024∗X_ast (3 ) ∗ de l t a
(1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) −(1701/2)∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a
(1 ) ∗exp(−3∗X_ast (1 ) )+128∗X_ast (3 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast
(1 ) )+( i512 / i 3 ) ∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) )
−(243/2)∗X_ast (4 ) ∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )+16∗X_ast (4 )
∗ de l t a (1 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )−( i1408 / i 3 ) ∗ de l t a (2 ) ∗ de l t a (1 )
∗exp(−4∗X_ast (1 ) )+567∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−152∗
de l t a (2 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) )−( i1408 / i 3 ) ∗ de l t a (2 ) ∗ de l t a (1 ) ∗
exp(−4∗X_ast (1 ) )+567∗ de l t a (2 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−152∗
de l t a (2 ) ∗ de l t a (1 ) ∗exp(−2∗X_ast (1 ) ) +(567/2)∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp
(−3∗X_ast (1 ) )−256∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−4∗X_ast (1 ) ) +(567/2)∗
de l t a (3 ) ∗ de l t a (1 ) ∗exp(−3∗X_ast (1 ) )−64∗ de l t a (3 ) ∗ de l t a (1 ) ∗exp(−2∗
X_ast (1 ) ) ;

DDF = [DDF1;DDF2;DDF3;DDF4 ] ;

We de f i n e the bound Z^2( r ) .

Z2 = abs (DDF) ;

%%%%%%%%%%%%%% De f i n i t i o n o f the Radi i Polynomial

P=[sup (Z2) −ones (4 , 1 ) sup (Y) ] ;

r1=so r t ( r oo t s (P( 1 , : ) ) ) ;
r2=so r t ( r oo t s (P( 2 , : ) ) ) ;
r3=so r t ( r oo t s (P( 3 , : ) ) ) ;
r4=so r t ( r oo t s (P( 4 , : ) ) ) ;

I=[max( r1 (1 ) ,max( r2 (1 ) ,max( r3 (1 ) , r4 (1 ) ) ) ) min ( r1 (2 ) , min ( r2 (2 ) ,min
( r3 (2 ) , r4 (2 ) ) ) ) ] ;

I =[1.01∗ I (1 ) 0 .99∗ I (2 ) ] ;

s u c c e s s =1;
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% We make sure that the r a d i i po lynomia l s are negat ive

Y=in t v a l ( sup (Y) ) ; Z2=i n t v a l ( sup (Z2 ) ) ;

r_minus=i n t v a l ( I (1 ) ) ;
r_plus=i n t v a l ( I (2 ) ) ;

p1_minus=Z2 (1) ∗r_minus^2−r_minus+Y(1) ;
p1_plus=Z2 (1) ∗ r_plus^2−r_plus+Y(1) ;
p2_minus=Z2 (2) ∗r_minus^2−r_minus+Y(2) ;
p2_plus=Z2 (2) ∗ r_plus^2−r_plus+Y(2) ;

i f sup (p1_minus )>=0
suc c e s s =0;
d i sp l ay ( ’ p1_minus>0 ’ )

end

i f sup ( p1_plus )>=0
suc c e s s =0;
d i sp l ay ( ’ p1_plus>0 ’ )

end

i f sup (p2_minus )>=0
suc c e s s =0;
d i sp l ay ( ’ p2_minus>0 ’ )

end

i f sup ( p2_plus )>=0
suc c e s s =0;
d i sp l ay ( ’ p2_plus>0 ’ )

end

i f r_plus>=r_star
I (2 )=r_star ;

end

end
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