Computation of maximal local (un)stable manifold patches by the parameterization method

Auteur(s): Breden, Maxime; Lessard, Jean-Philippe; James, J. D. Mireles
Résumé: In this work we develop some automatic procedures for computing high order polynomial expansions of local (un)stable manifolds for equilibria of differential equations. Our method incorporates validated truncation error bounds, and maximizes the size of the image of the polynomial approximation relative to some specified constraints. More precisely we use that the manifold computations depend heavily on the scalings of the eigenvectors: indeed we study the precise effects of these scalings on the estimates which determine the validated error bounds. This relationship between the eigenvector scalings and the error estimates plays a central role in our automatic procedures. In order to illustrate the utility of these methods we present several applications, including visualization of invariant manifolds in the Lorenz and FitzHugh–Nagumo systems and an automatic continuation scheme for (un)stable manifolds in a suspension bridge problem. In the present work we treat explicitly the case where the eigenvalues satisfy a certain non-resonance condition.
Date de publication: 1 janvier 2016
Date de la mise en libre accès: 16 mai 2016
Version du document: Version of Record
Lien permanent: http://hdl.handle.net/20.500.11794/1343
Ce document a été publié dans: Indagationes mathematicae, Vol. 27 (1), 340-367 (2016)
http://dx.doi.org/10.1016/j.indag.2015.11.001
Noord-Hollandsche Uitgevers Maatschappij
Autre version disponible: 10.1016/j.indag.2015.11.001
http://arxiv.org/abs/1508.02615
Collection(s) :Articles publiés dans des revues avec comité de lecture

Fichier(s) :
TailleFormat 
1-s2.0-S0019357715000981-main.pdf787.65 kBAdobe PDFTélécharger
Tous les documents dans CorpusUL sont protégés par la Loi sur le droit d'auteur du Canada.