Rigorous numerics for nonlinear differential equations using Chebyshev series

Auteur(s): Lessard, Jean-Philippe; Reinhardt, Christian
Résumé: A computational method based on Chebyshev series to rigorously compute solutions of initial and boundary value problems of analytic nonlinear vector fields is proposed. The idea is to recast solutions as fixed points of an operator defined on a Banach space of rapidly decaying Chebyshev coefficients and to use the so-called radii polynomials to show the existence of a unique fixed point near an approximate solution. As applications, solutions of initial value problems in the Lorenz equations and symmetric connecting orbits in the Gray--Scott equation are rigorously computed. The symmetric connecting orbits are obtained by solving a boundary value problem with one of the boundary values in the stable manifold.
Date de publication: 2 janvier 2014
Date de la mise en libre accès: 16 mai 2016
Version du document: Version of Record
Lien permanent: http://hdl.handle.net/20.500.11794/1261
Ce document a été publié dans: SIAM Journal on Numerical Analysis, Vol. 52 (1), 1–22 (2014)
http://dx.doi.org/10.1137/13090883X
Society for Industrial and Applied Mathematics
Autre version disponible: 10.1137/13090883X
Collection(s) :Articles publiés dans des revues avec comité de lecture

Fichier(s) :
TailleFormat 
13090883x.pdf1.21 MBAdobe PDFTélécharger
Tous les documents dans CorpusUL sont protégés par la Loi sur le droit d'auteur du Canada.